
Some random tricks in OCaml (mostly about modules)
Because not everyone reads the whole manual (neither do I)



Using a language for several years allows you to discover some subtleties

I Some may seem naive (it is more about tricks)
I It is not about advanced stuff in the type-system
I You know that my english sucks (sorry), and we have time so don’t worry about

interrupt me!



Plan

I Some recap about modules (as a language feature and not as a compilation
feature)

I A small use-case of GADTs usage (which is not really about type equalities)
I A (very) small consideration about OOP on front of GADTs and existentials



Modules

OCaml, Objects Can be Avoided using the Module Language

A slightly false sentence



Modules (as a language): core concepts

Module language is a small functional programming language (Fw) in OCaml.

I Encapsulation: separate implementation (struct) and description (sig)
(allowing abstraction and partial abstraction (private))

I Generalization: you can define transluent signatures
I Poor’s man Namespacing
I Typing features: enables Higher Kinded Polymorphism
I Functional, there are function from module to module (that can be applicative

or generative)
I First class: modules can interact with the value level (with some restriction on

kind arities)
I Recursive, useful but. . . urgh



Encapsulation

type 'a t

val empty : 'a t
val push : 'a -> 'a t -> 'a t
val pop : 'a t -> 'a option * 'a t

type 'a t = 'a list

let empty = []
let push x s = x :: s

let pop = function
| [] -> None, empty
| x :: xs -> Some x, xs

let some_internal_function = ...



Transluent Signatures

A signature that is not already attached to a concrete module

module type STACK = sig
type 'a t

val empty : 'a t
val push : 'a -> 'a t -> 'a t
val pop : 'a t -> 'a option * 'a t

end



module Stack_list : STACK = struct
type 'a t = 'a list

let empty = []
let push x s = x :: s

let pop = function
| [] -> None, empty
| x :: xs -> Some x, xs

let some_internal_function = ...
end



As our signature is defined as being attachable to several concrete modules, the type is
. . . defacto unknown. So abstract by default. Sometimes we’d like to provide a concrete
representation of our types, even though we use a module type.

module Stack_list : STACK with type 'a t = 'a list = struct
type 'a t = 'a list
...

end

Now, ’a Stack_list.t‘ is no longer an abstract type.



Modules are not modules types and vice versa

Module can be inserted into another module
module My_list = struct

include Stdlib.List
end

Module type can be inserted into another module type or into a signature
module My_stack : sig

include STACK with type 'a t = 'a list
end = struct ... end

module type MY_STACK = sig
include STACK

end



Module type can be inserted into another module type or into a signature

module type MY_CUSTOM_LIST = sig
include Stdlib.List

(* won't work since `List` is not a module type *)
end

Convert concrete module to module type
module type MY_CUSTOM_LIST = sig

include module type of Stdlib.List
end



Directly promoting module type without value to module (without value)

let’s imagine that we want to convert this S into a module A (concrete)

module type S = sig
type t
type e
type f

end



module A : S
with type i = int
and type s = string
and type f = float =

struct
type i = int
type s = string
type f = float

end

Damn. . . so verbose



module type A = S
with type i = int
and type s = string
and type f = float

module rec A : A = A (* recursive trick *)

It works (well) only because there is no value into S.



Module as Namespaces

The obvious approach to using modules (before abstraction and generalisation) is to use
them as namespaces. Since modules are enclosed in a true language you can write
some common patterns in namespace importation.



Renaming
import * from List

Just uses open (List function won’t be re-exported)
open List



Renaming
import Foo as Bar

Just uses modules aliases
module Foo = Bar



Selective importation
import {map, iter} from List

Use arbitrary modules expression in open statement
open (

List :
sig

val map : ('a -> 'b) -> 'a list -> 'b list
val iter : ('a -> unit) -> 'a list -> unit

end)
But it can be . . . anoying because you need to know/and repeat the types that you need



Use arbitrary modules expression in open statement 2
open struct

let map, iter = List.(map, iter)
end

Selective importation with renaming
import {map, iter as for_each} from List

Use arbitrary modules expression in open statement
open struct

let map, for_each = List.(map, iter)
end



Using arbitrary modules expression you can even abstract without mli

open struct
(* My private API *)
let make a b c = ...

end

(* my public api *)
let make a b c =
make

<$> validate_a a
<*> validate_b b
<*> validate_c c



Partial abstraction (private)

type t = private int

val make :
int
-> (t, [ `Invalid_age ]) Result.t

type t = int

let make x =
if x < 0 then

Error `Invalid_age
else

Ok x

I prohibits construction “outside the module”
I leak the representation (allowing pattern matching, for example)



An other example from lambdaLille/History
Describes a Talk and everything should be validated

Type (in mli it is private)
type talk = private

{ title : string
; speakers : Speaker.t list
; abstract : string option
; tags : string list
; lang : [ `French | `English ]
; video_link : string option
; support_link : string option
; other_links : Link.t list
}

val from_string : (module Yocaml.Metadata.VALIDABLE)
-> string -> (talk, Error.t) Result.t



In ml

type talk = ...

let make title speakers abstract tags
lang video_link support_link other_links =

{title; speakers; abstract; tags; lang; video_link;
support_link; other_links}



let from_string
(module Validable : Yocaml.Metadata.VALIDABLE) = function

let* value = Validable.from_string str in
object_and
(fun obj ->

make
<$> required_assoc string "title" obj
<*> required_assoc (list_of string) "speakers" obj
<*> optional_assoc string "abstract" obj
<*> optional_assoc_or ~default:[] (list_of string) "tags" obj
<*> required_assoc (lang (module Validable)) "lang" obj
(* to be continued, but slides are to small... *)

value



Chosing between Abstract and Private types

Abstract types
I When you want a structure to follow

a general interface
I When you know that your

implementation will change
I Abstract types fit well with the

description of data structures

Private types
I When the structure of the type

matters
I But to restrict its creation (like in

Age.t or Talk.talk)
I private types fit well with the

description of structured data
attached to constraints



Functors : function from module to module

Don’t be confused with functors from Haskell.

module type MAPPABLE = sig
type 'a t (* Notice that this is Higher Kinded Polymorphism *)
val map : ('a -> 'b) -> 'a t -> 'b t

end

module Iterable (M: MAPPABLE) : sig
type 'a t = 'a M.t
val iter : ('a -> unit) -> 'a t -> unit

end = struct
type 'a t = 'a M.t
let iter f x = ignore @@ M.map f x

end



Modules are structurally subtyped

module List_iterable = Iterable (List)

It works because List has a 'a t and a map function that fit with our contract.



A trick if you hate structural subtyping

If you hate structural subtyping (and you prefer nominal subtyping):

I Nominal subtyping is a specialization of structural subtyping
I So, having structural subtyping implies the ability to encode nominal

subtyping

module type MAPPABLE = sig
type 'a t
val map : ('a -> 'b) -> 'a t -> 'b t

end

module type NOMINAL_MAPPABLE = sig
include MAPPABLE
val is_mappable : unit

end



module Extend (M: MAPPABLE) :
NOMINAL_MAPPABLE with type 'a t = 'a M.t =

struct
include M
let is_mappable = ()

end

( ... )

module List_iterable = Iterable (Extend (List))

But, seriously, Why would we want to do that. . .



Some syntactic analogy

Value Level
let f x y = ...

Module Level
module F (X: SIG_X) (Y: SIG_Y) = ...



Value Level
let g = f x

Module Level
module G = F (X)



Value Level
let f = fun x y -> ...
let g = function x -> function y -> ...

Module Level
module F = functor (X: SIG_X) (Y: SIG_Y) -> ...
module G = functor (X: SIG_X) -> functor (Y: SIG_Y) -> ...



Functor can be Applicative or Generative

Applicative
module T = struct type t = int end
module F (T : sig type t end) = struct

type t = F of T.t
end

module A = F (T)
module B = F (T)

let x : A.t = B.F 1 (* Works *)



Generative
module T = struct type t = int end
module G (T : sig type t end) () = struct

type t = F of T.t
end

module A = G (T) ()
module B = G (T) ()

let x : A.t = B.F 1 (* Do not Works *)
Generative functors generate fresh types at each application.



Chosing between Applicative and Generative

In general, Applicative (the default behaviour) is the right choice. But sometime,
Generatives can be useful.

I When you functor is impure
I It fit very well with first-class-modules for generating fresh types (because you can

unpack (in an existential sense) first-class-modules in the body of a generative
functor.)

I Allows some specifics encoding like singleton-ish types



First classes modules
Building modules inside a value using regular values
Using first classes modules you can produce modules using user-defined values.

module type CONFIG = sig
val server : string
val port : int

end

let run (module C : CONFIG) = ... some complex code

let mk_config ~server ~port =
let module C = struct

let server = server
let port = port

end in run (module C)



First classes modules

Parametric function
When you don’t deal with parametrized type it works well.

module type TO_STRINGABLE = sig
type t
val to_string : t -> string

end

let print
(type s)
(module S : TO_STRINGABLE with type t = s)
(s : s) = print_endline @@ S.to_string s



When use First Class modules

First class modules are existentials so they make sense when you need existentials

I If your values (inside the module) depends on user-given values
I when you need to deal with fresh types using generativity
I for API purpose (when you do not deal with kind upper zero)

If you absolutely want FCM, you need to provide Functor for monomorphization
and it can be cumbersome



Static finite state machines

Sometimes, the flow of your application can be modeled as a finite state machine.

I A sequence of operation, loop and conditionals is an implicit state machine
I Sometime state machine are defined inside the program flow.

The second point is about dynamic states machines (and is well solved by machine over
some complex categorical stuff, ie: Mealy/Moore Machine over Profunctors and
Comonad).

The first one is solved by being explicit about the state machine inside the structure of
your program.



Let’s imagine a very simple state machine

Figure 1: lol, sorry for the definition



You can modeling transition using GADT

GADTs
It just sum types that allows constructor to be not surjective and that introduces local
types equalities (that made existentials easy to represents).
In other words, GADts allows (among others) to define sum constructors that are
indexed by types witnesses.



type _ t =
| Foo : float t
| Bar : int t

I Foo has type float t
I Bar has type int t

When we read paper or document about GADTs, it is always about complicated (but
interesting stuff). Here, is a very simple example that show how to produces type safe
finite state machine using GADTs.



let f = function
| Foo -> "hey"

let g = function
| Bar -> "hoy"

Thanks local type equalities, we can have exhaustive pattern matching that don’ t
match very constructor.



For expressing our transitions we need rows

Just indexing types with regular types as witnesses leads to a lack of flexibility. So we
should uses rows. We are lucky, OCaml allows two define rows using two ways :

I Rows on products are objects (so yes, Objects are pretty good as phantom type
parameter)

I Rows on sums are polymorphic variants

For this example, we will use polymorphic variants.



type time = int

type _ state =
| Running : time -> [ `Running ] state
| Paused : time -> [ `Paused ] state

let start () = Running 0
let resume (Paused x) = Running x
let pause (Running x) = Paused x
let tick (Running x) = Running (x + 1)



let a =
start ()
|> tick
|> pause
|> resume
|> tick

# [ `Running ] state = Running 2



let b =
start ()
|> tick
|> pause
|> sleep 10
|> resume
|> tick

# [ `Running ] state = Running 12



let c =
start ()
|> sleep 10

# BOUM. It does not work. muehehe



So since we know GADTs and Modules, we do not need objects ! Yes, with modules you
can have

I abstraction
I encapsulation
I verbose existentials

and with GADTs you can have

I existentials that introduces type equalities. So !



But what are objects

In the OOP world, having a good definition of Object is . . . complicated.
But not only in a technical jargon, in french the most generic definition is :
“Something to look at” (in Roland Barthes “L’aventure sémiologique”).

Fortunately, Alan Kay, one of the father of the OOP says that an object is . . .
“that can can receive messages”

So giving a good definition of Objects, in the sense of OOP, that works everywhere
seems impossible so let’s gives a . . . OCaml definition.



Objects are products that introduces open recursion and lexically scoped self value,
that allows, by late-binding a posteriori specialization and that universally quantify
over type parameters (generics) and existentially over the polymorphic variables of
methods.



So . . . when use objects ?

I Object types as a phantom type parameters
I and . . . if you write code like this:

type t = T : ((module S with type t = 'a) * 'a) -> t

You are smart, but you definitively needs objects



FIN

thanks


