- https://xvw.lol
- @vdwxv
- @xvw@merveilles.town
- github.com/xvw
- LambdaNantes

Scalaic

- https://xvw.Iol
- @vdwxv
- @xvw@merveilles.town
- github.com/xvw
- LambdaNantes

DISCLAIMER

Scalaic

Scalaic

 experience with Scala
Scalaic

I am essentially an
OCaml developer

- https://xvw.Iol
- @vdwxv
- @xvw@merveilles.town
- github.com/xvw
- LambdaNantes

DISCLAIMER

Very cool language btw

Scalaic

Scalaic

Because it's quite a story!

Because it's quite a story!
 A quest of a litmus case

Betrayals

Because it's quite a story!
 A quest of a litmus case

Betrayals
Introduced by example

Because it's quite a

 story!A quest of a litmus case

Betrayals
Introduced by example

Because it's quite a

 story!A quest of a litmus case

4 Conclusions and Future Work

GADTs in Scala have historically been poorly understood. In this paper, we showed that they can be explained in terms of simpler features already present in Scala's core type system. We sketched different encodings of GADTs, demon-
strating the tight correspondence between, on one hand, the (sub)type proofs and existential types that normally underlie GADT reasoning and, on the other hand, bounded abstract type members and intersection types, which are core to Scala.
It would be desirable to formalize GADT semantics by elaboration into pDOT following our sketches, which we leave for future work. In any case, the insights presented in this paper can already be used to guide future GADT developments in upcoming versions of the Scala compiler.

A plan!

Reminder: Algebraic types \longrightarrow GADTs: a first definition \longrightarrow The poor typed AST example

A plan!

Reminder: Algebraic types \longrightarrow GADTs: a first definition \longrightarrow The poor typed AST example

\longrightarrow and ADT vs AT

The quintessential GADT \longleftarrow Types equalities/constraints \longleftarrow More about litmus cases

A plan!

Reminder: Algebraic types \longrightarrow GADTs: a first definition \longrightarrow The poor typed AST example

The quintessential GADT \longleftarrow Types equalities/constraints \longleftarrow More about litmus cases

Finding the litmus case \qquad More about existentials

Type-level lists
\longrightarrow Some usage of Eq[A, B]

A plan!

Reminder: Algebraic types \longrightarrow GADTs: a first definition \longrightarrow The poor typed AST example

The quintessential GADT \longleftarrow Types equalities/constraints \longleftarrow More about litmus cases

Finding the litmus case
\longrightarrow More about existentials \longrightarrow Type-level lists \longrightarrow Some usage of Eq[A, B]

|l

Conclusions
A practical example
Bi-directional URL definition \downarrow

Algebraic types

Algebra: الجبر, al-jabr
Algebraic types
+*^

Algebra: الجبر, al-jabr
\checkmark

A O \& Preic tyocs

Describe Data
-

Algebra: الجبر, al-jabr

Algebraic types

Are Algebraic Data Types
Describe Data

Algebra: الجبر, al-jabr

Algebraic types

Since the subject of the presentation is GADT, we will focus on ADTs
equational reasoning can be used to estimate cardinality and more computational algebra, but this is not at all what the presentation is about
And it is, in fact, not very interesting except for DDD.

Reuniting broken fragments

As in common Algebra,
we can build new types on top of types and operators and applying equational reasoning

Algebra: الجبر, al-jabr

Algebraic types

Since the subject of the presentation is GADT, we will focus on ADTs

Product types

Describes the conjunction of several types (their Cartesian product).

```
case class Human(
    firstName: String,
    lastName: String,
    age: Int
)
```


Product types

Describes the conjunction of several types (their Cartesian product).

They can be recursive.

```
case class Human(
    firstName: String,
    lastName: String,
    age: Int,
    children: List[Human]
)
```


Product types

Describes the conjunction of several types (their Cartesian product).

They can be recursive.

They can introduce Type Parameters (parametric polymorphism), sometimes introducing variance markers for expressing subtyping relations.

```
case class Human(
    firstName: String,
    lastName: String,
    age: Int,
    children: List[Human]
    )
```

type parameters
(generics)

Product types

Describes the conjunction of several types (their Cartesian product).

They can be recursive.

They can introduce Type Parameters (parametric polymorphism), sometimes introducing variance markers for expressing subtyping relations.

```
case class Human(
    firstName: String,
    lastName: String,
    age: Int,
    children: List[Human]
)
```

type parameters
(generics)

Is, in fact, the most minimal product type

Product types

Describes the conjunction of several types (their Cartesian product).

They can be recursive.

They can introduce Type Parameters (parametric polymorphism), sometimes introducing variance markers for expressing subtyping relations.

```
case class Human(
    firstName: String,
    lastName: String,
    age: Int,
    children: List[Human]
)
```

type parameters
(generics)

Is, in fact, the most minimal product type

Sum types

```
enum Bool:
    case True
case False
```

Describes the disjunction of several types (their Disjoint union).

Sum types

Describes the disjunction of several types (their Disjoint union).

```
enum Bool:
    case True
case False
Refutable but:
highlights encoding via subtyping and sealing.
```


Sum types

Describes the disjunction of several types (their Disjoint union).

```
enum Bool:
    case True
case False
```

Refutable but:
highlights encoding via subtyping and sealing.
. This sometimes requires annotation or unification tricks.

Sum types

Describes the disjunction of several types (their Disjoint union).

As for Product, they can be recursive and introducing generics (and variance markers)

```
enum Bool:
    case True
    case False
enum MList[+A]:
case Nil
case Cons(x: A, xs: MList[A])
```


Sum types

Describes the disjunction of several types (their Disjoint union).

As for Product, they can be recursive and introducing generics (and variance markers)

And as for Product, there is a minimal Sum type (Either)

```
enum Bool:
    case True extends Bool
    case False extends Bool
enum MList[+A]:
    case Nil
    case Cons(x: A, xs: MList[A])
enum Sum[+A, +B]:
    case Left(x: A)
    case Right(x: B)
```


Sum types

Describes the disjunction of several types (their Disjoint union).

As for Product, they can be recursive and introducing generics (and variance markers)

And as for Product, there is a minimal Sum type (Either)
enum Bool:
case True extends Bool
case False extends Bool
enum MList $[+A]$:
case Nil
case Cons(x: A, xs: MList[A])
enum $\operatorname{sum}[+A, \quad+B]$:
case Left(x: A)
case Right(x: B)
type Triple $=$ Sum[Int, Sum[Double, String]]
val a : Triple = Sum.Left(1)
val b: Triple = Sum.Right(Sum.Left(1.0))
val c : Triple = Sum.Right(Sum.Right("1"))

Sum types

Describes the disjunction of several types (their Disjoint union).

As for Product, they can be recursive and introducing generics (and variance markers)

And as for Product, there is a minimal Sum type (Either)

```
enum Bool:
    case True extends Bool
    case False extends Bool
enum MList[+A]:
    case Nil
    case Cons(x: A, xs: MList[A])
enum Sum[+A, +B]:
    case Left(x: A)
    case Right(x: B)
```

minimal exponential type
type $\operatorname{Arr}[-\mathrm{A},+\mathrm{B}]=\mathrm{A} \Rightarrow \mathrm{B}$
to conclude on
Algebraic types

They can express Model/Domain
to conclude on
Algebraic types

They can express Model/Domain
 Algebraic types

They can express Model/Domain
 Algebraic types

They can express Model/Domain
 Algebraic types

They have minimal representations

Sum types relies on subtyping and sealing

They can express Model/Domain

Paired with Pattern matching they are expressive for defining Data Structures

to conclude on

Algebraic types

They have minimal representations
Let's play with that

Sum types relies on subtyping and sealing
enum StringOrInt:
case SString(x: String)
case SInt(x: Int)

Let's be more explicit
enum StringOrInt:

$$
\begin{array}{ll}
\text { case SString(x: String) extends StringOrInt } \\
\text { case SInt(x: Int) } & \text { extends StringOrInt }
\end{array}
$$

Let's add a type parameter, just for fun
enum StringOrInt:

$$
\begin{array}{ll}
\text { case SString(x: String) extends StringOrInt } \\
\text { case SInt(x: Int) } & \text { extends StringOrInt }
\end{array}
$$

Does not compile String and Int needs a Type Parameter

```
enum StringOrInt[A]:
    case SString(x: String) extends StringOrInt[A]
    case SInt(x: Int)
    extends StringOrInt[A]
```

Let's fix the type parameter
enum StringOrInt[A]:

```
case SString(x: String) extends StringOrInt[String]
    case SInt(x: Int) extends StringOrInt[Int]
```


Let's fix the type parameter

enum StringOrInt[A]:
case SString(x: String) extends StringOrInt[String]
case SInt(x: Int) extends StringOrInt[Int]

```
def eval[A](x: StringOrInt[A]) : A =
    x match
    case StringOrInt.SString(x) => x
    case StringOrInt.SInt(x) => x
```

Let's fix the type parameter
enum StringOrInt[A]:

We no longer rely on subtyping to describe tags. We use a concrete type

case SString(x: String) extends StringOrInt[String]
case SInt(x: Int)
case SInt(x: Int)
extends StringOrInt [Int]
~

```
def eval[A](x: StringOrInt[A]) : A =
    x match
    case StringOrInt.SString(x) => x
    case StringOrInt.SInt(x) => x
```

Constructors of our sum are no more Surjective in [A]
Let's fix the type parameter

enum StringOrInt[A]:

We no longer rely on subtyping to describe tags. We use a concrete type

$$
\begin{array}{ll}
\text { case SString(x: String) extends StringOrInt[String] } \\
\text { case SInt(x: Int) } & \text { extends StringOrInt[Int] }
\end{array}
$$

L

```
def eval[A](x: StringOrInt[A]) : A =
    x match
    case StringOrInt.SString(x) => x
    case StringOrInt.SInt(x) => x
```

Constructors of our sum are no more Surjective in [A]
Let's fix the type parameter

We no longer rely on subtyping to describe tags. We use a concrete type

Since we are no more surjective, we can have partial pattern matching
def getInt(x: StringOrInt[Int]) =
x match
case StringOrInt.SInt(x) => x
"A Generalized Algebraic Data Type is a sum type that allows its constructors to be non-surjective on one or more of its type parameters and introduces local type-equality constraints in pattern-matching branches, making the expression of existential types trivial"
"A Generalized Algebraic Data Type is a sum type that allows its constructors to be non-surjective on one or more of its type parameters and introduces local type-equality constraints in pattern-matching branches, making the expression of existential types trivial"
"A Generalized Algebraic Data Type is a sum type that allows its constructors to be non-surjective on one or more of its type parameters and introduces local type-equality constraints in pattern-matching branches, making the expression of existential types trivial"
"A Generalized Algebraic Data Type is a sum type that allows its constructors to be non-surjective on one or more of its type parameters and introduces local type-equality constraints in pattern-matching branches, making the expression of existential types trivial"

This was the part forgotten in many GADT definitions
"A Generalized Algebraic Data Type is a sum type that allows its constructors to be non-surjective on one or more of its type parameters and introduces local type-equality constraints in pattern-matching branches, making the expression of existential types trivial"

This was the part forgotten in many GADT definitions

We'll see why later in the presentation, but it's a consequence of introducing local type equality constraints.
"A Generalized Algebraic Data Type is a sum type that allows its constructors to be non-surjective on one or more of its type parameters and introduces local type-equality constraints in pattern-matching branches, making the expression of existential types trivial"

This was the part forgotten in many GADT definitions

We'll see why later in the presentation, but it's a consequence of introducing local type equality constraints.

We have a little arithmetic AST

```
enum AST:
    case I(x: Int)
    case Add(l: AST, R: AST)
    case Mul(l: AST, R: AST)
```

```
def eval(ast: AST) : Int =
    import AST.*
    ast match
        case I(x) => x
        case Add(l, r) => eval(l) + eval(r)
        case Mul(l, r) => eval(l) * eval(r)
```


We have a little arithmetic AST

```
enum AST:
    case I(x: Int)
    case Add(l: AST, R: AST)
    case Mul(l: AST, R: AST)
```

```
def eval(ast: AST) : Int =
    import AST.*
    ast match
    case I(x) => x
    case Add(l, r) => eval(l) + eval(r)
    case Mul(l, r) => eval(l) * eval(r)
```

Let's add some Boolean/Condition support

We have a little arithmetic AST

```
enum AST:
    case I(x: Int)
    case Add(l: AST, R: AST)
    case Mul(l: AST, R: AST)
    import AST.*
    ast match
Let's add some Boolean/Condition support
Haskell Doc has a beautiful elaboration about the implementation, progressively, but since the example of the AST is broken:
let's get straight to the point
```

def eval(ast: AST) : Int =
case I(x) $\quad=>x$
case Add(l, r) => eval(l) + eval(r)
case Mul(l, r) => eval(l) * eval(r)

Introducing Boolean support

```
enum AST[A]:
case I(x: Int)
case B(x: Boolean)
case Add(l: AST[Int], r: AST[Int])
case Mul(l: AST[Int], r: AST[Int])
case Equal(l: AST[A], r: AST[A])
case Cond(c: AST[Boolean], t: AST[A], f:AST[A]) extends AST[A]
```


Introducing Boolean support

```
We use a witness, for the GADT
enum AST[A]:
case I(x: Int)
case B(x: Boolean)
case Add(l: AST[Int], r: AST[Int])
case Mul(l: AST[Int], r: AST[Int])
case Equal(l: AST[A], r: AST[A])
case Cond(c: AST[Boolean], t: AST[A], f:AST[A]) extends AST[A]
```


Introducing Boolean support

Introducing Boolean support

```
We use a witness, for the GADT
We fix the return type of every constructor
```

```
enum AST[A]:
```

enum AST[A]:
case I (x: Int) Normal forms of AST can be
case I (x: Int) Normal forms of AST can be
case B(x: Boolean)
case B(x: Boolean)
case Add(l: AST[Int], r: AST[Int])
case Add(l: AST[Int], r: AST[Int])
case Mul(l: AST[Int], r: AST[Int])
case Mul(l: AST[Int], r: AST[Int])
case Equal(l: AST[A], r: AST[A])
case Equal(l: AST[A], r: AST[A])
case Cond(c: AST[Boolean], t: AST[A], f:AST[A]) extends AST[A]

```
    case Cond(c: AST[Boolean], t: AST[A], f:AST[A]) extends AST[A]
```


Introducing Boolean support

Introducing Boolean support

Interpreting AST using polymorphic recursion

```
def eval[A](ast: AST[A]) : A =
    import AST.*
    ast match
        case I(x) 
        case Add(l, r) => eval(l) + eval(r)
        case Mul(l, r) => eval(l) * eval(r)
        case Equal(l, r) => eval(l) == eval(r)
        case Cond(c, t, f) => if(eval(c)) then eval(t) else eval(f)
```


Interpreting AST using polymorphic recursion

```
def eval[A](ast: AST[A]) : A =
import AST.*
ast match
    case I(x) => x
    case B(x) => x
    case Add(l, r) => eval(l) + eval(r)
    case Mul(l, r) => eval(l) * eval(r)
    case Equal(l, r) => eval(l) == eval(r)
    case Cond(c, t, f) => if(eval(c)) then eval(t) else eval(f)
```


Interpreting AST using polymorphic recursion

```
def eval[A](ast: AST[A]) : A =
import AST.*
ast match
possible, make code that's correct by
construction,
So what's the problem with this example?
```

```
    case I(x) => x
```

 case I(x) => x
 case B(x) => x
 case B(x) => x
 case Add(l, r) => eval(l) + eval(r)
 case Add(l, r) => eval(l) + eval(r)
 case Mul(l, r) => eval(l) * eval(r)
 case Mul(l, r) => eval(l) * eval(r)
 case Equal(l, r) => eval(l) == eval(r)
 case Equal(l, r) => eval(l) == eval(r)
 case Cond(c, t, f) => if(eval(c)) then eval(t) else eval(f)
    ```
    case Cond(c, t, f) => if(eval(c)) then eval(t) else eval(f)
```

As you can see, GADTs allow you to
express static invariants and, as far as

"A Generalized Algebraic Data Type is a sum type that allows its constructors to be non-surjective on one or more of its type parameters and introduces local type-equality constraints in pattern-matching branches, making the expression of existential types trivial"

And the examples taking advantage of the second part didn't work (in Scala 2), hence the weakness of the example.

And it was already described in this excellent paper

Andrew Kennedy, Claudio Russo. 2006.
Generalized Algebraic Data Types and Object-Oriented Programming.

And it was already described in this excellent paper

Andrew Kennedy, Claudio Russo. 2006.

Generalized Algebraic Data Types and Object-Oriented Programming.

So implementing the typed
interpreter/AST does not guarantee that the language supports GADTs.

And it was already described in this excellent paper

```
Andrew Kennedy, Claudio Russo. 2006.
Generalized Algebraic Data Types and Object-Oriented Programming.
```

So implementing the typed interpreter/AST does not guarantee that the language supports GADTs.

GADTS: algebraic types whose constructors introduce existential types and use type equality constraints OBJECTS: classes whose methods universally quantify over types, and use subtyping constraints

Both enable statically typed AST implementation

But if both approaches allow the same encodings, with incredibly similar usage, what's the problem?

Some Haskell/OCaml examples are not transposable

But if both approaches allow the same encodings, with incredibly similar usage, what's the problem?

But if both approaches allow the same encodings, with incredibly similar usage, what's the problem?

Naming things correctly facilitates their understanding, evolution and maintenance
(ahem "typeclasses")

But if both approaches allow the same encodings, with incredibly similar usage, what's the problem?
 Naming things correctly facilitates their understanding, evolution and maintenance

(ahem "typeclasses")

Lionel Parreaux, Aleksander Boruch-Gruszecki, and Paolo G. Giarrusso. 2019. Towards improved GADT reasoning in Scala.
 the problem?

But if both approaches allow the same encodings, with incredibly similar usage, what's

One of the easiest ways to prove that a language is Turing-Complete is to implement a Brainfuck interpreter, a very minimalist language that is also Turing-Complete.

One of the easiest ways to prove that a language is Turing-Complete is to implement a Brainfuck interpreter, a very minimalist language that is also Turing-Complete.

It is a perfect Litmus case for the Turing-Completude

One of the easiest ways to prove that a language is Turing-Complete is to implement a Brainfuck interpreter, a very minimalist language that is also Turing-Complete.

It is a perfect Litmus case for the Turing-Completude

As the local equality constraint was not used, we define it via a GADT (or an indexed type if it is not supported)

One of the easiest ways to prove that a language is Turing-Complete is to implement a Brainfuck interpreter, a very minimalist language that is also Turing-Complete.

It is a perfect Litmus case for the Turing-Completude

```
enum Eq[A, B]:
    case Refl[A]() extends Eq[A, A]
```

We define equality between A and B

case Refl[A]() extends Eq[A, A]

We define equality between A and B

case Refl[A]() extends Eq[A, A]

With only 1 constructor Refi

We define equality between A and B

We define equality between A and B

We define equality between A and B

And to ensure equalities, we can apply the Leibniz Substitution Principle to gives some tools

enum Eq[A, B]:
case Refl[A] () extends Eq[A, A]

```
enum Eq[A, B]:
    case Refl[A]() extends Eq[A, A]
```


Symmetry

def symmetry[A, B] (
witness: Eq[A, B]
) : Eq[B, A] = witness match
case Eq.Refl() => Eq.Refl()

```
enum Eq[A, B]:
    case Refl[A]() extends Eq[A, A]
```


Symmetry

```
def symmetry[A, B](
    witness: Eq[A, B]
```

) : Eq[B, A] = witness match
case Eq.Refl() => Eq.Refl()

Transitivity

```
def transitivity[A, B, C](
    witnessA: Eq[A, B],
    witnessB: Eq[B, C]
) : Eq[A, C] = (witnessA, witnessB) match
    case (Eq.Refl(), Eq.Refl()) => Eq.Refl()
```

```
enum Eq[A, B]:
    case Refl[A]() extends Eq[A, A]
```


Symmetry

```
def symmetry[A, B](
    witness: Eq[A, B]
```

) : Eq[B, A] = witness match
case Eq.Refl() => Eq.Refl()

Transitivity

```
def transitivity[A, B, C](
```

def transitivity[A, B, C](
witnessA: Eq[A, B],
witnessA: Eq[A, B],
witnessB: Eq[B, C]
witnessB: Eq[B, C]
) : Eq[A, C] = (witnessA, witnessB) match
) : Eq[A, C] = (witnessA, witnessB) match
case (Eq.Refl(), Eq.Refl()) => Eq.Refl()

```
    case (Eq.Refl(), Eq.Refl()) => Eq.Refl()
```


Free Cast

```
def cast[A, B](
```

def cast[A, B](

```
def cast[A, B](
    witness: Eq[A, B],
    witness: Eq[A, B],
    witness: Eq[A, B],
    value: A
    value: A
    value: A
) : B = witness match
) : B = witness match
) : B = witness match
    case Eq.Refl() => value
```

 case Eq.Refl() => value
    ```
    case Eq.Refl() => value
```

() $->$ value

```
enum Eq[A, B]:
    case Refl[A]() extends Eq[A, A]
```


Symmetry

```
def symmetry[A, B](
    witness: Eq[A, B]
) : Eq[B, A] = witness match
    case Eq.Refl() => Eq.Refl()
```


Transitivity

```
def transitivity[A, B, C](
```

def transitivity[A, B, C](
witnessA: Eq[A, B],
witnessA: Eq[A, B],
witnessB: Eq[B, C]
witnessB: Eq[B, C]
) : Eq[A, C] = (witnessA, witnessB) match
) : Eq[A, C] = (witnessA, witnessB) match
case (Eq.Refl(), Eq.Refl()) => Eq.Refl()

```
    case (Eq.Refl(), Eq.Refl()) => Eq.Refl()
```

Which gives a free-cast that can cross abstraction and boxing (if the cookie has been instantiated in the right place)

```
enum Eq[A, B]:
    case Refl[A]() extends Eq[A, A]
```


Symmetry

```
def symmetry[A, B](
    witness: Eq[A, B]
```

) : Eq[B, A] = witness match
case Eq.Refl() => Eq.Refl()

Free Cast

```
def cast[A, B](
    witness: Eq[A, B],
    value: A
) : B = witness match
    case Eq.Refl() => value
```

Transitivity

```
def transitivity[A, B, C](
    witnessA: Eq[A, B],
    witnessB: Eq[B, C]
) : Eq[A, C] = (witnessA, witnessB) match
    case (Eq.Refl(), Eq.Refl()) => Eq.Refl()
```


Injectivity

```
    def injectivity[T[_], A, B](
    witness: Eq[A, B]
    ) : Eq[T[A], T[B]] = witness match
    case Eq.Refl() => Eq.Refl()
```

```
enum Eq[A, B]:
    case Refl[A]() extends Eq[A, A]
```

Symmetry

This our Litmus Case!

```
def symmetry[A, B](
witness: Eq[A, B]
) : Eq[B, A] = witness match
case Eq.Refl() => Eq.Refl()
```


Free Cast

```
def cast[A, B](
```

witness: Fq[A, B],
value: A
: $\mathrm{B}=$ witness match
case Eq.Refl () \Rightarrow value


```
enum Eq[A, B]:
    case Refl[A]() extends Eq[A, A]
```


Symmetry

This our Litmus Case!

Free Cast

```
def cast[A, B](
```

witness: Fq[A, B],
value: A

```
: B = witness match
```

case Eq.Refl() \Rightarrow value

```
enum Eq[A, B]:
    case Refl[A]() extends Eq[A, A]
```


Symmetry

Transitivity

This our Litmus Case!

def symmetry[A, B] (

Free Cast

Handling type equalities with injectivity support is very tricky.

So supporting them is a litmus

 case for GADTs

```
def injectivity[T[_], A, B](
    witness: Eq[A, B]
```

) : Eq[T[A], \(T[B]]=\) witness match
 case Eq.Refl() => Eq.Refl()
    ```
enum Eq[A, B]:
    case Refl[A]() extends Eq[A, A]
```


This our Litmus Case!


```
enum Eq[A, B]:
    case Refl[A]() extends Eq[A, A]
```

Symmetry

Transitivity

This our Litmus Case!


```
enum Eq[A, B]:
    case Refl[A]() extends Eq[A, A]
```

Does Eq[A, B] only serve to prove the partially correct support of GADTs?

Symmetry
Transitivity

This our Litmus Case!

Free Cast

Handling type equalities with injectivity support is very tricky.

So supporting them is a litmus case for GADTs

```
Does this mean that GADTs are absolutely perfect in Scala? Nah
```



```
def injectivity[T[_], A, B](
    witness: Eq[A, B]
    ) : Eq[T[A], T[B]] = witness match
    case Eq.Refl() => Eq.Refl()
```

methods that act only if the generics handle some types

Fixing OOP with guarded methods

Fixing OOP with guarded methods

and without extension methods that
needs to break encapsulation

methods that act only if the generics handle some types
 ```class MList[A](val v: List[A]): \\ def sum(witness: Eq[A, Int]) : Int =```

Fixing OOP with guarded metho.

```
case Eq.Refl() =>
                            this.v.reduce((x, y) => x + y)
```

and without extension methods that needs to break encapsulation

```
def flatten[B](witness: Eq[A, List[B]]) : List[B] =
    witness match
    case Eq.Refl() =>
    this.v.flatMap(X => X)
```

guarding sum using $\mathrm{Eq}[\mathrm{A}, \mathrm{Int}]$
methods that act only if the generics handle some types
class MList[A] (val v: List[A]): def sum(witness: Eq[A, Int]) : Int =

Fixing OOP with guarded methon

```
case Eq.Refl() =>
    this.v.reduce((x, y) => x + y)
```

and without extension methods that needs to break encapsulation

```
def flatten[B](witness: Eq[A, List[B]]) : List[B] =
    witness match
    case Eq.Refl() =>
    this.v.flatMap(X => X)
```

guarding sum using $\mathrm{Eq}[\mathrm{A}, \mathrm{Int}]$
methods that act only if the generics handle some types
class MList[A] (val v: List[A]): def sum(witness: Eq[A, Int]) : Int =

Fixing OOP with guarded methone
witness match

```
case Eq.Refl() =>
    this.v.reduce((x, y) => x + y)
```

and without extension methods that
needs to break encapsulation

```
def flatten[B](witness: Eq[A, List[B]]) : List[B] =
```

 witness match
 case Eq.Refl() =>
 this.v.flatMap (X => X)
 guarding flatten using Eq[A,List[B]]

In fact, $\mathrm{Eq}[\mathrm{A}, \mathrm{B}]$ is the quintessential GADT. And much like Sum, Prod and Arr, it's normally sufficient to encode all other GADTs.

In fact, $\mathrm{Eq}[\mathrm{A}, \mathrm{B}]$ is the quintessential GADT. And much

 like Sum, Prod and Arr, it's normally sufficient to encode all other GADTs.

Foundations For Structured Programming With GADTs.

In fact, $\mathrm{Eq}[\mathrm{A}, \mathrm{B}]$ is the quintessential GADT. And much

 like Sum, Prod and Arr, it's normally sufficient to encode all other GADTs.```
enum T[A]:
 case SString() extends T[String]
 case SSInt() extends T[Int]
```

In fact, Eq[A, B] is the quintessential GADT. And much like Sum, Prod and Arr, it's normally sufficient to encode all other GADTs.


```
enum T[A]:
 case SString() extends T[String]
 case SSInt() extends T[Int]
enum T[A]:
case SString(w: Eq[A, String])
case SInt(w: Eq[A, Int])
```

EQ[A, B]

```
def zero[A](tagged: T[A]) : A =
import T.*
tagged match
 case SString(Eq.Refl()) => ""
 case SInt(Eq.Refl()) => 0
```




```
enum T[A]:
 case SString() extends T[String]
 case SSInt() extends T[Int]
```

```
enum T[A]:
```

enum T[A]:
case SString(w: Eq[A, String])
case SString(w: Eq[A, String])
case SInt( w: Eq[A, Int])

```
 case SInt(w: Eq[A, Int])
```


## Warming on T.SString(_)

## def partial(

tagged: T[Int]
) : Int = tagged match
case T.SInt(Eq.Refl())
$\mathrm{t}, \mathrm{Eq}[\mathrm{A}, \mathrm{B}]$ is the quintessential GADT. And much um, Prod and Arr, it's normally sufficient to encode er GADTs.

Can be used as a GADT


```
enum T[A]:
 case SString() extends T[String]
 case SSInt() extends T[Int]
```

def zero[A] (tagged: T[A]) : A =
import T.*
tagged match
case SString(Eq.Refl()) => ""
case SInt(Eq.Refl()) => 0
def partial (
tagged: T[Int]
) : Int = tagged match
case T.SInt(Eq.Refl())
t, Eq[A, B] is the quintessential GADT. And much um, Prod and Arr, it's normally sufficient to encode er GADTs.

Can be used as a GADT


```
enum T[A]:
 case SString() extends T[String]
 case SSInt() extends T[Int]
```

EQ[A, B]

```
enum T[A]:
case SString(w: Eq[A, String])
case SInt(w: Eq[A, Int])
```

```
def zero[A](tagged: T[A]) : A =
```

def zero[A](tagged: T[A]) : A =
import T.*
tagged match
case SString(Eq.Refl()) => ""
case SInt(Eq.Refl()) => 0

```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{enum \(T\) [\({ }^{\text {] }}\) :} \\
\hline case SString() & extends T[String] \\
\hline case SSInt() & extends T[Int] \\
\hline & EQ[A, B] \\
\hline \multicolumn{2}{|l|}{enum \(\mathrm{T}[\mathrm{A}]\) :} \\
\hline case SString(w: & Eq[A, String]) \\
\hline case SInt w: & Eq[A, Int]) \\
\hline
\end{tabular}

\section*{Warming on T.SString(_)}
def partial ! t, Eq[A, B] is the quintessential GADT. And much
tagged: T[Int]
) : Int = tagged match case T.SInt(Eq.Refl()) \(\Rightarrow\) um, Prod and Arr, it's normally sufficient to encode er GADTs.

```

```
enum T[A]:
```

```
enum T[A]:
```

```
enum T[A]:
 case SString() extends T[String]
 case SString() extends T[String]
 case SString() extends T[String]
 case SSInt() extends T[Int]
 case SSInt() extends T[Int]
 case SSInt() extends T[Int]
EQ[A, B]
```

```
enum T[A]:
```

enum T[A]:

```
enum T[A]:
case SString(w: Eq[A, String])
```

case SString(w: Eq[A, String])

```
case SString(w: Eq[A, String])
```

```
 case SInt(w: Eq[A, Int])
```

```
 case SInt(w: Eq[A, Int])
```

```
 case SInt(w: Eq[A, Int])
```

```
def zero[A](tagged: T[A]) : A =
import T.*
 case SString(Eq.Refl()) => ""
 case SInt(Eq.Refl()) => 0
tagged match
```

"A Generalized Algebraic Data Type is a sum type that allows its constructors to be non-surjective on one or more of its type parameters and introduces local type-equality constraints in pattern-matching branches, making the expression of existential types trivial"
"A Generalized Algebraic Data Type is a sum type that allows its constructors to be non-surjective on one or more of its type parameters and introduces local type-equality constraints in pattern-matching branches, making the expression of existential types trivial"

Introducing Local Types Equation is stronger than introducing Local Types (existentials) this is why GADTs come, de facto with existentials

# "A Generalized Algebraic Data Type is a sum type that 

 allows its constructors to be non-surjective on one or more of its type parameters and introduces local type-equality constraints in pattern-matching branches, making the expression of existential types trivial"Haskell 's $\qquad$ Introducing Local Types Equation is stronger than introducing Local Types (existentials) this is why GADTs come, de facto with existentials

```
enum TList[TY, W]:
case Nil[W]()
extends TList[W, W]
case Cons[A, TY, W](x: A, xs: TList[TY, W]) extends TList[A => TY, W]
```


## Witness to deal with usage

```
enum TList[TY, W]:
case Nil[W]() extends TList[W, W]
case Cons[A, TY, W](x: A, xs: TList[TY, W]) extends TList[A => TY, W]
```


## Witness to deal with usage

Type-level Continuation

```
enum TList[TY, W]:
 case Nil[W]() extends TList[W, W]
 case Cons[A, TY, W](x: A, xs: TList[TY, W]) extends TList[A => TY, W]
```


## Witness to deal with usage

## Type-level Continuation

```
enum TList[TY, W]:
 case Nil[W]() extends TList[W, W]
 case Cons[A, TY, W](x: A, xs: TList[TY, W]) extends TList[A => TY, W]
```

Ensure:
TY = X => W

## Witness to deal with usage

## Type-level Continuation



Ensure:
TY = $\mathrm{X}=\mathrm{D}$

Existential, packed by the continuation

## Witness to deal with usage

## Type-level Continuation



## Witness to deal with usage

```
val r : TList[Int => String => String, String] =
 import TList.*
 Cons(1, Cons("foo", Nil()))
```

Type-level Continuation
enum TList[TY, W]:
case Nil[W]() extends TList[W, W]
case Cons[A, TY, W] (x: A, xs: TList[TY, W]) extends TList[A => TY, W]
Ensure:
$T Y=X=>W$

Existential, packed by the continuation
extends TList[W, W]
extends TList[A => TY, W]


Track the continuation



## Going further

## Bidirectional routing

```
val url = genLink("user" ~: string ~: "id" ~: int ~: eop) ("u55")(10)
 // Generate : /user/u55/id/10/
val page : Option[(String, Int)]= handleLink(
 "user/u55/id/10/",
 "user" ~: string ~: "id" ~: int ~: eop
) (userName => userId => (userName, userId))
 // Generate: Some(("u55", 10))
```


## Bidirectional routing

```
 Generate URL from a path
val url = genLink("user" ~: string ~: "id" ~: int ~: eop)("u55")(10)
 // Generate : /user/u55/id/10/
val page : Option[Html]= handleLink(
 "user/u55/id/10/",
 "user" ~: string ~: "id" ~: int ~: eop
) (userName => userId => renderUserPage(userName, userId))
 // Generate: Some(("u55", 10))
Generate controller from a path
```


## Bidirectional routing



## Bidirectional routing



Generate controller from a path

Using a technique similar to Typelevel List

## Bidirectional routing

```
enum V[T]:
```

```
case String extends V[String]
```

case String extends V[String]
case Int extends V[Int]
case Int extends V[Int]
case Bool extends V[Boolean]

```
case Bool extends V[Boolean]
```

```
enum Path[TY, W]:
```

enum Path[TY, W]:
case Eop[W]()
case Eop[W]()
extends Path[W, W]
extends Path[W, W]
case Const(x: String, xs: Path[TY, W])
case Const(x: String, xs: Path[TY, W])
case Var[A, TY, W](x: V[A], xs: Path[TY, W])
case Var[A, TY, W](x: V[A], xs: Path[TY, W])
extends Path[A => TY, W]
extends Path[A => TY, W]
def ~:[A](x: V[A]) : Path[A => TY, W] = Path.Var(x, this)
def ~:[A](x: V[A]) : Path[A => TY, W] = Path.Var(x, this)
def ~:(x: String) : Path[TY, W] = Path.Const(x, this)
def ~:(x: String) : Path[TY, W] = Path.Const(x, this)
def eop[W] : Path[W,W] = Path.Eop[W]()
def eop[W] : Path[W,W] = Path.Eop[W]()
val string = V.String
val string = V.String
val int = V.Int
val int = V.Int
val bool = V.Bool

```
val bool = V.Bool
```

Bidirectional routing

```
Ensure:
TY = X => W
enum Path[TY, W]:
case Eop[W]()
 extends Path[W, W]
case Const(x: String, xs: Path[TY, W])
case Var[A, TY, W] (x: V[A], xs: Path[TY, W])
 extends Path[A => TY, W]
def ~:[A](x: V[A]) : Path[A => TY, W] = Path.Var(x, this)
def ~:(x: String) : Path[TY, W] = Path.Const(x, this)
def eop[W] : Path[W,W] = Path.Eop[W]()
val string = V.String
val int = V.Int
val bool = V.Bool
```


## Bidirectional routing

enum V[T]:
case String extends V[String]
case Int extends V[Int]
case Bool extends V[Boolean]

Representing type, typelevel

```
```

Ensure:

```
```

Ensure:
TY = X => W
TY = X => W
enum Path[TY, W]:
enum Path[TY, W]:
case Eop[W]()
case Eop[W]()
extends Path[W, W]
extends Path[W, W]
case Const(x: String, xs: Path[TY, W])
case Const(x: String, xs: Path[TY, W])
case Var[A, TY, W](x: V[A], Xs: Path[TY, W])
case Var[A, TY, W](x: V[A], Xs: Path[TY, W])
extends Path[A => TY, W]
extends Path[A => TY, W]
def ~:[A](x: V[A]) : Path[A => TY, W] = Path.Var(x, this)
def ~:[A](x: V[A]) : Path[A => TY, W] = Path.Var(x, this)
def ~:(x: String) : Path[TY, W] = Path.Const(x, this)
def ~:(x: String) : Path[TY, W] = Path.Const(x, this)
def eop[W] : Path[W,W] = Path.Eop[W]()
def eop[W] : Path[W,W] = Path.Eop[W]()
val string = V.String
val string = V.String
val int = V.Int
val int = V.Int
val bool = V.Bool

```
```

val bool = V.Bool

```
```


## Bidirectional routing

enum $V[T]:$
case String extends V[String]
case Int extends V[Int]
case Bool extends $V[B o o l e a n]$

## Ensure:

$$
T Y=X=>W
$$

enum Path[TY, W]:

```
case Eop[W]()
```

        extends Path[W, W]
    case Const(x: String, xs: Path[TY, W])

Representing type, typelevel


Same as our List but constraint by V[T].

```
def ~:[A](x: V[A]) : Path[A => TY, W] = Path.Var(x, this)
def ~:(x: String) : Path[TY, W] = Path.Const(x, this)
def eop[W] : Path[W,W] = Path.Eop[W]()
val string = V.String
val int = V.Int
val bool = V.Bool
```


## Bidirectional routing



## Ensure:

$$
T Y=X=>W
$$

```
enum Path[TY, W]:
```


## A constant does not create Hole

```
case Eop[W]()
 extends Path[W, W]
```

case Const(x: String, xs: Path[TY, W])

Representing type, typelevel


Same as our List but constraint by V[T].

```
def genLink[TY]
 (path: Path[TY, String]) : TY = ..
```

```
def ~:[A](x: V[A]) : Path[A => TY, W] = Path.Var(x, this)
def ~:(x: String) : Path[TY, W] = Path.Const(x, this)
def eop[W] : Path[W,W] = Path.Eop[W]()
val string = V.String
val int = V.Int
val bool = V.Bool
```


## Bidirectional routing



## Ensure:

$$
T Y=X=>W
$$

```
enum Path[TY, W]:
```


## A constant does not create Hole

```
case Eop[W]()
 extends Path[W, W]
```

case Const(x: String, xs: Path[TY, W])

Representing type, typelevel


Same as our List but constraint by V[T].

```
def genLink[TY]
 (path: Path[TY, String]) : TY = ..
def handleLink[TY, W]
 (uri: String, path: Path[TY, W])
 (controller: TY) : Option[W] = ..
```


## To conclude

"A Generalized Algebraic Data Type is a sum type that allows its constructors to be non-surjective on one or more of its type parameters and introduces local type-equality constraints in pattern-matching branches, making the expression of existential types trivial"

## To conclude

"A Generalized Algebraic Data Type is a sum type that allows its constructors to be non-surjective on one or more of its type parameters and introduces local type-equality constraints in pattern-matching branches, making the expression of existential types trivial"


