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Lionel Parreaux, Aleksander Boruch-Gruszecki, and Paolo G. Giarrusso. 2019. 
Towards improved GADT reasoning in Scala.

Nov 16, 2011: Paul Chiusano's gist

A huge amount of 
work

So, let's try to:
- understand why
- trying with an other approach

https://gist.github.com/pchiusano/1369239/revisions
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and ADT vs AT

Types equalities/constraints

meh. Why "poor"

More about litmus casesThe quintessential GADT

Finding the litmus case

Some usage of Eq[A, B]

More about existentials Type-level lists

A practical example

Bi-directional URL definition

Conclusions
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Algebraic types

As in common Algebra, 
we can build new types on top of types and operators
and applying equational reasoning

Algebra: الجبر, al-jabr

Reuniting broken fragments

+ *  ^
Are Algebraic Data Types

Describe Data 😉
Have no particular name
Describe behaviour on data

Since the subject of the presentation
is GADT, we will focus on ADTs

equational reasoning can be used to estimate cardinality and 
more computational algebra, but this is not at all what the 

presentation is about
And it is, in fact, not very interesting except for DDD.
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Product types case class Human(

 firstName: String,

 lastName:  String,

 age:       Int,

 children:  List[Human]

)

Describes the conjunction of several 
types (their Cartesian product).

They can be recursive.

They can introduce Type Parameters
(parametric polymorphism), sometimes 
introducing variance markers for 
expressing subtyping relations. case class Prod[+A, +B](fst: A, snd: B)

type parameters 
(generics)

Is, in fact, the most minimal product type

val quad = Prod(1, Prod(2, Prod(3, 4)))
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Sum types
Describes the disjunction of several 
types (their Disjoint union).

As for Product, they can be recursive 
and introducing generics (and variance 
markers)

And as for Product, there is a minimal 
Sum type (Either)

enum Bool:

 case True  extends Bool

 case False extends Bool

enum MList[+A]:

 case Nil

 case Cons(x: A, xs: MList[A])

enum Sum[+A, +B]:

 case Left(x: A)

 case Right(x: B)

type Arr[-A, +B] = A => B 
minimal exponential type



Algebraic types
to conclude on



Algebraic types
to conclude on

They can express Model/Domain



Algebraic types
to conclude on

They can express Model/Domain
Paired with Pattern matching they
are expressive for defining Data Structures



Algebraic types
to conclude on

They can express Model/Domain
Paired with Pattern matching they
are expressive for defining Data Structures

They have minimal representations



Algebraic types
to conclude on

They can express Model/Domain
Paired with Pattern matching they
are expressive for defining Data Structures

They have minimal representations

Sum types relies on subtyping and sealing



Algebraic types
to conclude on

They can express Model/Domain
Paired with Pattern matching they
are expressive for defining Data Structures

They have minimal representations

Sum types relies on subtyping and sealing

Let's play with that
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enum StringOrInt[A]:

 case SString(x: String) extends StringOrInt[String]

 case SInt(x: Int)       extends StringOrInt[Int]

Let's fix the type parameter

def eval[A](x: StringOrInt[A]) : A =

 x match

   case StringOrInt.SString(x) => x

   case StringOrInt.SInt(x)    => x

We no longer rely on subtyping to describe tags. We use a 
concrete type

Constructors of our sum are no more Surjective in [A]

Since we are no more surjective, we can have
partial pattern matching

def getInt(x: StringOrInt[Int]) =

 x match

   case StringOrInt.SInt(x) => x
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This was the part forgotten in many GADT 
definitions

We'll see why later in the presentation, but it's a 
consequence of introducing local type equality 
constraints.

which often involves polymorphic recursions
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We have a little arithmetic AST

enum AST:

  case I(x: Int)

  case Add(l: AST, R: AST)

  case Mul(l: AST, R: AST)

def eval(ast: AST) : Int =

   import AST.*

   ast match

     case I(x)      => x

     case Add(l, r) => eval(l) + eval(r)

     case Mul(l, r) => eval(l) * eval(r)

Let's add some Boolean/Condition support

Haskell Doc has a beautiful elaboration about 
the implementation, progressively, but since
the example of the AST is broken:
let's get straight to the point
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enum AST[A]:

  case I(x: Int)                                  extends AST[Int]

  case B(x: Boolean)                              extends AST[Boolean]

  case Add(l: AST[Int], r: AST[Int])              extends AST[Int]

  case Mul(l: AST[Int], r: AST[Int])              extends AST[Int]

  case Equal(l: AST[A], r: AST[A])                extends AST[Boolean]

  case Cond(c: AST[Boolean], t: AST[A], f:AST[A]) extends AST[A]

You can keep polymorphic 
constructors

We fix the return type of every constructor

Normal forms of AST can be 
constrained

We use a witness, for the GADT

Invalid ASTs can no 
longer be built��

Introducing Boolean support
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Interpreting AST using polymorphic recursion

def eval[A](ast: AST[A]) : A =

   import AST.*

   ast match

     case I(x)          => x

     case B(x)          => x

     case Add(l, r)     => eval(l) + eval(r)

     case Mul(l, r)     => eval(l) * eval(r)

     case Equal(l, r)   => eval(l) == eval(r)

     case Cond(c, t, f) => if(eval(c)) then  eval(t) else eval(f)

As you can see, GADTs allow you to 
express static invariants and, as far as 
possible, make code that's correct by 
construction!

So what's the problem with this example?
(that worked in Scala 2.x)
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trivial"

�� It only covers this part of the definition

And the examples taking advantage of the 
second part didn't work (in Scala 2), hence the 
weakness of the example.The Litmus case was wrong
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Andrew Kennedy, Claudio Russo. 2006. 
Generalized Algebraic Data Types and Object-Oriented Programming.

And it was already described in this excellent paper

So implementing the typed 
interpreter/AST does not 
guarantee that the language 
supports GADTs.

GADTS:       algebraic types whose constructors introduce existential types and use type equality constraints
OBJECTS:  classes whose methods universally quantify over types, and use subtyping constraints

Both enable statically typed AST implementation
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But if both approaches allow the same 
encodings, with incredibly similar usage, what's 
the problem?

Some Haskell/OCaml examples are not 
transposable

Naming things correctly facilitates their 
understanding, evolution and maintenance

(ahem "typeclasses")

Lionel Parreaux, Aleksander Boruch-Gruszecki, and Paolo G. Giarrusso. 2019. 
Towards improved GADT reasoning in Scala.

Yes, Scala 2.x didn't support GADTs 
properly



One of the easiest ways to prove that a language is 
Turing-Complete is to implement a Brainfuck 
interpreter, a very minimalist language that is also 
Turing-Complete.



One of the easiest ways to prove that a language is 
Turing-Complete is to implement a Brainfuck 
interpreter, a very minimalist language that is also 
Turing-Complete.

It is a perfect Litmus case for the 
Turing-Completude



One of the easiest ways to prove that a language is 
Turing-Complete is to implement a Brainfuck 
interpreter, a very minimalist language that is also 
Turing-Complete.

It is a perfect Litmus case for the 
Turing-Completude

Can we find a Litmus case for GADTs?



One of the easiest ways to prove that a language is 
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This our Litmus Case!

Handling type equalities with 
injectivity support is very tricky.

So supporting them is a litmus 
case for GADTs

Jeremy Yallop, Oleg Kiselyov. 2010. 
First-class modules: hidden power and tantalizing promises.
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Does Eq[A, B] only serve to prove the 
partially correct support of GADTs?
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needs to break encapsulation

methods that act only if the generics handle 
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class MList[A](val v: List[A]):

 def sum(witness: Eq[A, Int]) : Int =

   witness match

     case Eq.Refl() =>

       this.v.reduce((x, y) => x + y)

 def flatten[B](witness: Eq[A, List[B]]) : List[B] =

   witness match

     case Eq.Refl() =>

       this.v.flatMap(X => X)

guarding sum using Eq[A, Int]

guarding flatten using Eq[A,List[B]]
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allows its constructors to be non-surjective on one or 
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type-equality constraints in pattern-matching 
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trivial"
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Introducing Local Types Equation is stronger than 
introducing Local Types (existentials) this is why 

GADTs come, de facto with existentials

Haskell 's 
ExistentialQuantification 

predate GADT introduction
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Type-level Continuation
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W can be fixed  by the usage

Going  further
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val url = genLink("user" ~: string ~: "id" ~: int ~: eop)("u55")(10)

   // Generate : /user/u55/id/10/

val page : Option[Html]= handleLink(

     "user/u55/id/10/",
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   // Generate: Some(("u55", 10))

Bidirectional routing

Generate URL from a path

Generate controller from a path

Using a technique similar to Typelevel List



Bidirectional routing

enum V[T]:

 case String extends V[String]

 case Int    extends V[Int]

 case Bool   extends V[Boolean]

enum Path[TY, W]:

 case Eop[W]()  

     extends Path[W, W]

 case Const(x: String, xs: Path[TY, W])

 case Var[A, TY, W](x: V[A], xs: Path[TY, W]) 

     extends Path[A => TY, W]

 def ~:[A](x: V[A]) : Path[A => TY, W] = Path.Var(x, this)

 def ~:(x: String) : Path[TY, W]  = Path.Const(x, this)

def eop[W] : Path[W, W] = Path.Eop[W]()

val string = V.String

val int = V.Int

val bool = V.Bool
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