
Another introduction to
Yet

GADTs

Xavier Van de Woestyne

Generalized Algebraic Data Types

Another introduction to
Yet

GADTs

Xavier Van de Woestyne

● https://xvw.lol
● @vdwxv
● @xvw@merveilles.town
● github.com/xvw
● LambdaNantes

Generalized Algebraic Data Types

https://xvw.lol

Another introduction to
Yet

GADTs

Xavier Van de Woestyne

● https://xvw.lol
● @vdwxv
● @xvw@merveilles.town
● github.com/xvw
● LambdaNantes

DISCLAIMER

Generalized Algebraic Data Types

https://xvw.lol

Another introduction to
Yet

GADTs

Xavier Van de Woestyne

● https://xvw.lol
● @vdwxv
● @xvw@merveilles.town
● github.com/xvw
● LambdaNantes

DISCLAIMER

I am essentially an
OCaml developer

Generalized Algebraic Data Types

https://xvw.lol

Another introduction to
Yet

GADTs

Xavier Van de Woestyne

● https://xvw.lol
● @vdwxv
● @xvw@merveilles.town
● github.com/xvw
● LambdaNantes

DISCLAIMER

I am essentially an
OCaml developer

This talk is my first
experience with Scala

Generalized Algebraic Data Types

https://xvw.lol

Another introduction to
Yet

GADTs

Xavier Van de Woestyne

● https://xvw.lol
● @vdwxv
● @xvw@merveilles.town
● github.com/xvw
● LambdaNantes

DISCLAIMER

I am essentially an
OCaml developer

This talk is my first
experience with Scala

Generalized Algebraic Data Types

Very cool language
btw

��

https://xvw.lol

Another introduction to
Yet

GADTs

Xavier Van de Woestyne

● https://xvw.lol
● @vdwxv
● @xvw@merveilles.town
● github.com/xvw
● LambdaNantes

DISCLAIMER

I am essentially an
OCaml developer

This talk is my first
experience with Scala

Generalized Algebraic Data Types

Very cool language
btw

��

yes, why? As a keynote? ��

https://xvw.lol

Because it's quite a
story!

Because it's quite a
story!

 A quest of a litmus case

Because it's quite a
story!

Betrayals

 A quest of a litmus case

Because it's quite a
story!

Betrayals

 A quest of a litmus case

Introduced by example
since Scala 2.x

Because it's quite a
story!

Betrayals

 A quest of a litmus case

Introduced by example
since Scala 2.x

Nov 16, 2011: Paul Chiusano's gist

https://gist.github.com/pchiusano/1369239/revisions

Because it's quite a
story!

Betrayals

 A quest of a litmus case

Introduced by example
since Scala 2.x

Lionel Parreaux, Aleksander Boruch-Gruszecki, and Paolo G. Giarrusso. 2019.
Towards improved GADT reasoning in Scala.

Nov 16, 2011: Paul Chiusano's gist

A huge amount of
work

https://gist.github.com/pchiusano/1369239/revisions

Because it's quite a
story!

Betrayals

 A quest of a litmus case

Introduced by example
since Scala 2.x

Lionel Parreaux, Aleksander Boruch-Gruszecki, and Paolo G. Giarrusso. 2019.
Towards improved GADT reasoning in Scala.

Nov 16, 2011: Paul Chiusano's gist

A huge amount of
work

https://gist.github.com/pchiusano/1369239/revisions

Because it's quite a
story!

Betrayals

 A quest of a litmus case

Introduced by example
since Scala 2.x

Lionel Parreaux, Aleksander Boruch-Gruszecki, and Paolo G. Giarrusso. 2019.
Towards improved GADT reasoning in Scala.

Nov 16, 2011: Paul Chiusano's gist

A huge amount of
work

So, let's try to:
- understand why
- trying with an other approach

https://gist.github.com/pchiusano/1369239/revisions

A plan!
Reminder: Algebraic types GADTs: a first definition The poor typed AST example

why they're useful

and ADT vs AT

meh. Why "poor"

A plan!
Reminder: Algebraic types GADTs: a first definition The poor typed AST example

why they're useful

and ADT vs AT

Types equalities/constraints

meh. Why "poor"

More about litmus casesThe quintessential GADT

A plan!
Reminder: Algebraic types GADTs: a first definition The poor typed AST example

why they're useful

and ADT vs AT

Types equalities/constraints

meh. Why "poor"

More about litmus casesThe quintessential GADT

Finding the litmus case

Some usage of Eq[A, B]

More about existentials Type-level lists

A plan!
Reminder: Algebraic types GADTs: a first definition The poor typed AST example

why they're useful

and ADT vs AT

Types equalities/constraints

meh. Why "poor"

More about litmus casesThe quintessential GADT

Finding the litmus case

Some usage of Eq[A, B]

More about existentials Type-level lists

A practical example

Bi-directional URL definition

Conclusions

Algebraic types

Algebraic types
Algebra: الجبر, al-jabr

Reuniting broken fragments

Algebraic types

As in common Algebra,
we can build new types on top of types and operators
and applying equational reasoning

Algebra: الجبر, al-jabr

Reuniting broken fragments

Algebraic types

As in common Algebra,
we can build new types on top of types and operators
and applying equational reasoning

Algebra: الجبر, al-jabr

Reuniting broken fragments

+ * ^

Algebraic types

As in common Algebra,
we can build new types on top of types and operators
and applying equational reasoning

Algebra: الجبر, al-jabr

Reuniting broken fragments

+ * ^
Are Algebraic Data Types

Describe Data 😉

Algebraic types

As in common Algebra,
we can build new types on top of types and operators
and applying equational reasoning

Algebra: الجبر, al-jabr

Reuniting broken fragments

+ * ^
Are Algebraic Data Types

Describe Data 😉
Have no particular name
Describe behaviour on data

Algebraic types

As in common Algebra,
we can build new types on top of types and operators
and applying equational reasoning

Algebra: الجبر, al-jabr

Reuniting broken fragments

+ * ^
Are Algebraic Data Types

Describe Data 😉
Have no particular name
Describe behaviour on data

Since the subject of the presentation
is GADT, we will focus on ADTs

Algebraic types

As in common Algebra,
we can build new types on top of types and operators
and applying equational reasoning

Algebra: الجبر, al-jabr

Reuniting broken fragments

+ * ^
Are Algebraic Data Types

Describe Data 😉
Have no particular name
Describe behaviour on data

Since the subject of the presentation
is GADT, we will focus on ADTs

equational reasoning can be used to estimate cardinality and
more computational algebra, but this is not at all what the

presentation is about
And it is, in fact, not very interesting except for DDD.

Product types case class Human(

 firstName: String,

 lastName: String,

 age: Int

)

Describes the conjunction of several
types (their Cartesian product).

Product types case class Human(

 firstName: String,

 lastName: String,

 age: Int,

 children: List[Human]

)

Describes the conjunction of several
types (their Cartesian product).

They can be recursive.

Product types case class Human(

 firstName: String,

 lastName: String,

 age: Int,

 children: List[Human]

)

Describes the conjunction of several
types (their Cartesian product).

They can be recursive.

They can introduce Type Parameters
(parametric polymorphism), sometimes
introducing variance markers for
expressing subtyping relations. case class Prod[+A, +B](fst: A, snd: B)

type parameters
(generics)

Product types case class Human(

 firstName: String,

 lastName: String,

 age: Int,

 children: List[Human]

)

Describes the conjunction of several
types (their Cartesian product).

They can be recursive.

They can introduce Type Parameters
(parametric polymorphism), sometimes
introducing variance markers for
expressing subtyping relations. case class Prod[+A, +B](fst: A, snd: B)

type parameters
(generics)

Is, in fact, the most minimal product type

Product types case class Human(

 firstName: String,

 lastName: String,

 age: Int,

 children: List[Human]

)

Describes the conjunction of several
types (their Cartesian product).

They can be recursive.

They can introduce Type Parameters
(parametric polymorphism), sometimes
introducing variance markers for
expressing subtyping relations. case class Prod[+A, +B](fst: A, snd: B)

type parameters
(generics)

Is, in fact, the most minimal product type

val quad = Prod(1, Prod(2, Prod(3, 4)))

Sum types
Describes the disjunction of several
types (their Disjoint union).

enum Bool:

 case True extends Bool

 case False extends Bool

Sum types
Describes the disjunction of several
types (their Disjoint union).

enum Bool:

 case True extends Bool

 case False extends Bool

Refutable but:
highlights encoding via subtyping and sealing.

Sum types
Describes the disjunction of several
types (their Disjoint union).

enum Bool:

 case True extends Bool

 case False extends Bool

Refutable but:
highlights encoding via subtyping and sealing.

This sometimes requires annotation or
unification tricks.

Sum types
Describes the disjunction of several
types (their Disjoint union).

As for Product, they can be recursive
and introducing generics (and variance
markers)

enum Bool:

 case True extends Bool

 case False extends Bool

enum MList[+A]:

 case Nil

 case Cons(x: A, xs: MList[A])

Sum types
Describes the disjunction of several
types (their Disjoint union).

As for Product, they can be recursive
and introducing generics (and variance
markers)

And as for Product, there is a minimal
Sum type (Either)

enum Bool:

 case True extends Bool

 case False extends Bool

enum MList[+A]:

 case Nil

 case Cons(x: A, xs: MList[A])

enum Sum[+A, +B]:

 case Left(x: A)

 case Right(x: B)

Sum types
Describes the disjunction of several
types (their Disjoint union).

As for Product, they can be recursive
and introducing generics (and variance
markers)

And as for Product, there is a minimal
Sum type (Either)

enum Bool:

 case True extends Bool

 case False extends Bool

enum MList[+A]:

 case Nil

 case Cons(x: A, xs: MList[A])

enum Sum[+A, +B]:

 case Left(x: A)

 case Right(x: B)

type Triple = Sum[Int, Sum[Double, String]]

val a : Triple = Sum.Left(1)

val b : Triple = Sum.Right(Sum.Left(1.0))

val c : Triple = Sum.Right(Sum.Right("1"))

Sum types
Describes the disjunction of several
types (their Disjoint union).

As for Product, they can be recursive
and introducing generics (and variance
markers)

And as for Product, there is a minimal
Sum type (Either)

enum Bool:

 case True extends Bool

 case False extends Bool

enum MList[+A]:

 case Nil

 case Cons(x: A, xs: MList[A])

enum Sum[+A, +B]:

 case Left(x: A)

 case Right(x: B)

type Arr[-A, +B] = A => B
minimal exponential type

Algebraic types
to conclude on

Algebraic types
to conclude on

They can express Model/Domain

Algebraic types
to conclude on

They can express Model/Domain
Paired with Pattern matching they
are expressive for defining Data Structures

Algebraic types
to conclude on

They can express Model/Domain
Paired with Pattern matching they
are expressive for defining Data Structures

They have minimal representations

Algebraic types
to conclude on

They can express Model/Domain
Paired with Pattern matching they
are expressive for defining Data Structures

They have minimal representations

Sum types relies on subtyping and sealing

Algebraic types
to conclude on

They can express Model/Domain
Paired with Pattern matching they
are expressive for defining Data Structures

They have minimal representations

Sum types relies on subtyping and sealing

Let's play with that

enum StringOrInt:

 case SString(x: String)

 case SInt(x: Int)

enum StringOrInt:

 case SString(x: String) extends StringOrInt

 case SInt(x: Int) extends StringOrInt

Let's be more explicit

enum StringOrInt:

 case SString(x: String) extends StringOrInt

 case SInt(x: Int) extends StringOrInt

Let's add a type parameter, just for fun

enum StringOrInt[A]:

 case SString(x: String) extends StringOrInt[A]

 case SInt(x: Int) extends StringOrInt[A]

Does not compile String and Int needs a Type Parameter

enum StringOrInt[A]:

 case SString(x: String) extends StringOrInt[String]

 case SInt(x: Int) extends StringOrInt[Int]

Let's fix the type parameter

enum StringOrInt[A]:

 case SString(x: String) extends StringOrInt[String]

 case SInt(x: Int) extends StringOrInt[Int]

Let's fix the type parameter

def eval[A](x: StringOrInt[A]) : A =

 x match

 case StringOrInt.SString(x) => x

 case StringOrInt.SInt(x) => x

enum StringOrInt[A]:

 case SString(x: String) extends StringOrInt[String]

 case SInt(x: Int) extends StringOrInt[Int]

Let's fix the type parameter

def eval[A](x: StringOrInt[A]) : A =

 x match

 case StringOrInt.SString(x) => x

 case StringOrInt.SInt(x) => x

We no longer rely on subtyping to describe tags. We use a
concrete type

enum StringOrInt[A]:

 case SString(x: String) extends StringOrInt[String]

 case SInt(x: Int) extends StringOrInt[Int]

Let's fix the type parameter

def eval[A](x: StringOrInt[A]) : A =

 x match

 case StringOrInt.SString(x) => x

 case StringOrInt.SInt(x) => x

We no longer rely on subtyping to describe tags. We use a
concrete type

Constructors of our sum are no more Surjective in [A]

enum StringOrInt[A]:

 case SString(x: String) extends StringOrInt[String]

 case SInt(x: Int) extends StringOrInt[Int]

Let's fix the type parameter

def eval[A](x: StringOrInt[A]) : A =

 x match

 case StringOrInt.SString(x) => x

 case StringOrInt.SInt(x) => x

We no longer rely on subtyping to describe tags. We use a
concrete type

Constructors of our sum are no more Surjective in [A]

Since we are no more surjective, we can have
partial pattern matching

def getInt(x: StringOrInt[Int]) =

 x match

 case StringOrInt.SInt(x) => x

"A Generalized Algebraic Data Type is a sum type that
allows its constructors to be non-surjective on one or
more of its type parameters and introduces local
type-equality constraints in pattern-matching
branches, making the expression of existential types
trivial"

��

"A Generalized Algebraic Data Type is a sum type that
allows its constructors to be non-surjective on one or
more of its type parameters and introduces local
type-equality constraints in pattern-matching
branches, making the expression of existential types
trivial"

We've just seen how��

"A Generalized Algebraic Data Type is a sum type that
allows its constructors to be non-surjective on one or
more of its type parameters and introduces local
type-equality constraints in pattern-matching
branches, making the expression of existential types
trivial"

We've just seen how

which often involves polymorphic recursions

��

"A Generalized Algebraic Data Type is a sum type that
allows its constructors to be non-surjective on one or
more of its type parameters and introduces local
type-equality constraints in pattern-matching
branches, making the expression of existential types
trivial"

We've just seen how

This was the part forgotten in many GADT
definitions

which often involves polymorphic recursions

��

"A Generalized Algebraic Data Type is a sum type that
allows its constructors to be non-surjective on one or
more of its type parameters and introduces local
type-equality constraints in pattern-matching
branches, making the expression of existential types
trivial"

We've just seen how

This was the part forgotten in many GADT
definitions

We'll see why later in the presentation, but it's a
consequence of introducing local type equality
constraints.

which often involves polymorphic recursions

��

"A Generalized Algebraic Data Type is a sum type that
allows its constructors to be non-surjective on one or
more of its type parameters and introduces local
type-equality constraints in pattern-matching
branches, making the expression of existential types
trivial"

We've just seen how

This was the part forgotten in many GADT
definitions

We'll see why later in the presentation, but it's a
consequence of introducing local type equality
constraints.

which often involves polymorphic recursions

��

Let's see why using a poor example

We have a little arithmetic AST

enum AST:

 case I(x: Int)

 case Add(l: AST, R: AST)

 case Mul(l: AST, R: AST)

def eval(ast: AST) : Int =

 import AST.*

 ast match

 case I(x) => x

 case Add(l, r) => eval(l) + eval(r)

 case Mul(l, r) => eval(l) * eval(r)

We have a little arithmetic AST

enum AST:

 case I(x: Int)

 case Add(l: AST, R: AST)

 case Mul(l: AST, R: AST)

def eval(ast: AST) : Int =

 import AST.*

 ast match

 case I(x) => x

 case Add(l, r) => eval(l) + eval(r)

 case Mul(l, r) => eval(l) * eval(r)

Let's add some Boolean/Condition support

We have a little arithmetic AST

enum AST:

 case I(x: Int)

 case Add(l: AST, R: AST)

 case Mul(l: AST, R: AST)

def eval(ast: AST) : Int =

 import AST.*

 ast match

 case I(x) => x

 case Add(l, r) => eval(l) + eval(r)

 case Mul(l, r) => eval(l) * eval(r)

Let's add some Boolean/Condition support

Haskell Doc has a beautiful elaboration about
the implementation, progressively, but since
the example of the AST is broken:
let's get straight to the point

Introducing Boolean support

enum AST[A]:

 case I(x: Int) extends AST[Int]

 case B(x: Boolean) extends AST[Boolean]

 case Add(l: AST[Int], r: AST[Int]) extends AST[Int]

 case Mul(l: AST[Int], r: AST[Int]) extends AST[Int]

 case Equal(l: AST[A], r: AST[A]) extends AST[Boolean]

 case Cond(c: AST[Boolean], t: AST[A], f:AST[A]) extends AST[A]

enum AST[A]:

 case I(x: Int) extends AST[Int]

 case B(x: Boolean) extends AST[Boolean]

 case Add(l: AST[Int], r: AST[Int]) extends AST[Int]

 case Mul(l: AST[Int], r: AST[Int]) extends AST[Int]

 case Equal(l: AST[A], r: AST[A]) extends AST[Boolean]

 case Cond(c: AST[Boolean], t: AST[A], f:AST[A]) extends AST[A]

We use a witness, for the GADT

Introducing Boolean support

enum AST[A]:

 case I(x: Int) extends AST[Int]

 case B(x: Boolean) extends AST[Boolean]

 case Add(l: AST[Int], r: AST[Int]) extends AST[Int]

 case Mul(l: AST[Int], r: AST[Int]) extends AST[Int]

 case Equal(l: AST[A], r: AST[A]) extends AST[Boolean]

 case Cond(c: AST[Boolean], t: AST[A], f:AST[A]) extends AST[A]

We fix the return type of every constructor

We use a witness, for the GADT

Introducing Boolean support

enum AST[A]:

 case I(x: Int) extends AST[Int]

 case B(x: Boolean) extends AST[Boolean]

 case Add(l: AST[Int], r: AST[Int]) extends AST[Int]

 case Mul(l: AST[Int], r: AST[Int]) extends AST[Int]

 case Equal(l: AST[A], r: AST[A]) extends AST[Boolean]

 case Cond(c: AST[Boolean], t: AST[A], f:AST[A]) extends AST[A]

We fix the return type of every constructor

Normal forms of AST can be
constrained

We use a witness, for the GADT

Introducing Boolean support

enum AST[A]:

 case I(x: Int) extends AST[Int]

 case B(x: Boolean) extends AST[Boolean]

 case Add(l: AST[Int], r: AST[Int]) extends AST[Int]

 case Mul(l: AST[Int], r: AST[Int]) extends AST[Int]

 case Equal(l: AST[A], r: AST[A]) extends AST[Boolean]

 case Cond(c: AST[Boolean], t: AST[A], f:AST[A]) extends AST[A]

You can keep polymorphic
constructors

We fix the return type of every constructor

Normal forms of AST can be
constrained

We use a witness, for the GADT

Introducing Boolean support

enum AST[A]:

 case I(x: Int) extends AST[Int]

 case B(x: Boolean) extends AST[Boolean]

 case Add(l: AST[Int], r: AST[Int]) extends AST[Int]

 case Mul(l: AST[Int], r: AST[Int]) extends AST[Int]

 case Equal(l: AST[A], r: AST[A]) extends AST[Boolean]

 case Cond(c: AST[Boolean], t: AST[A], f:AST[A]) extends AST[A]

You can keep polymorphic
constructors

We fix the return type of every constructor

Normal forms of AST can be
constrained

We use a witness, for the GADT

Invalid ASTs can no
longer be built��

Introducing Boolean support

Interpreting AST using polymorphic recursion

def eval[A](ast: AST[A]) : A =

 import AST.*

 ast match

 case I(x) => x

 case B(x) => x

 case Add(l, r) => eval(l) + eval(r)

 case Mul(l, r) => eval(l) * eval(r)

 case Equal(l, r) => eval(l) == eval(r)

 case Cond(c, t, f) => if(eval(c)) then eval(t) else eval(f)

Interpreting AST using polymorphic recursion

def eval[A](ast: AST[A]) : A =

 import AST.*

 ast match

 case I(x) => x

 case B(x) => x

 case Add(l, r) => eval(l) + eval(r)

 case Mul(l, r) => eval(l) * eval(r)

 case Equal(l, r) => eval(l) == eval(r)

 case Cond(c, t, f) => if(eval(c)) then eval(t) else eval(f)

As you can see, GADTs allow you to
express static invariants and, as far as
possible, make code that's correct by
construction!

Interpreting AST using polymorphic recursion

def eval[A](ast: AST[A]) : A =

 import AST.*

 ast match

 case I(x) => x

 case B(x) => x

 case Add(l, r) => eval(l) + eval(r)

 case Mul(l, r) => eval(l) * eval(r)

 case Equal(l, r) => eval(l) == eval(r)

 case Cond(c, t, f) => if(eval(c)) then eval(t) else eval(f)

As you can see, GADTs allow you to
express static invariants and, as far as
possible, make code that's correct by
construction!

So what's the problem with this example?
(that worked in Scala 2.x)

"A Generalized Algebraic Data Type is a sum type that
allows its constructors to be non-surjective on one or
more of its type parameters and introduces local
type-equality constraints in pattern-matching
branches, making the expression of existential types
trivial"

�� It only covers this part of the definition

"A Generalized Algebraic Data Type is a sum type that
allows its constructors to be non-surjective on one or
more of its type parameters and introduces local
type-equality constraints in pattern-matching
branches, making the expression of existential types
trivial"

�� It only covers this part of the definition

And the examples taking advantage of the
second part didn't work (in Scala 2), hence the
weakness of the example.

"A Generalized Algebraic Data Type is a sum type that
allows its constructors to be non-surjective on one or
more of its type parameters and introduces local
type-equality constraints in pattern-matching
branches, making the expression of existential types
trivial"

�� It only covers this part of the definition

And the examples taking advantage of the
second part didn't work (in Scala 2), hence the
weakness of the example.The Litmus case was wrong

Andrew Kennedy, Claudio Russo. 2006.
Generalized Algebraic Data Types and Object-Oriented Programming.

And it was already described in this excellent paper

Andrew Kennedy, Claudio Russo. 2006.
Generalized Algebraic Data Types and Object-Oriented Programming.

And it was already described in this excellent paper

So implementing the typed
interpreter/AST does not
guarantee that the language
supports GADTs.

Andrew Kennedy, Claudio Russo. 2006.
Generalized Algebraic Data Types and Object-Oriented Programming.

And it was already described in this excellent paper

So implementing the typed
interpreter/AST does not
guarantee that the language
supports GADTs.

GADTS: algebraic types whose constructors introduce existential types and use type equality constraints
OBJECTS: classes whose methods universally quantify over types, and use subtyping constraints

Both enable statically typed AST implementation

But if both approaches allow the same
encodings, with incredibly similar usage, what's
the problem?

But if both approaches allow the same
encodings, with incredibly similar usage, what's
the problem?

Some Haskell/OCaml examples are not
transposable

But if both approaches allow the same
encodings, with incredibly similar usage, what's
the problem?

Some Haskell/OCaml examples are not
transposable

Naming things correctly facilitates their
understanding, evolution and maintenance

(ahem "typeclasses")

But if both approaches allow the same
encodings, with incredibly similar usage, what's
the problem?

Some Haskell/OCaml examples are not
transposable

Naming things correctly facilitates their
understanding, evolution and maintenance

(ahem "typeclasses")

Lionel Parreaux, Aleksander Boruch-Gruszecki, and Paolo G. Giarrusso. 2019.
Towards improved GADT reasoning in Scala.

But if both approaches allow the same
encodings, with incredibly similar usage, what's
the problem?

Some Haskell/OCaml examples are not
transposable

Naming things correctly facilitates their
understanding, evolution and maintenance

(ahem "typeclasses")

Lionel Parreaux, Aleksander Boruch-Gruszecki, and Paolo G. Giarrusso. 2019.
Towards improved GADT reasoning in Scala.

Yes, Scala 2.x didn't support GADTs
properly

One of the easiest ways to prove that a language is
Turing-Complete is to implement a Brainfuck
interpreter, a very minimalist language that is also
Turing-Complete.

One of the easiest ways to prove that a language is
Turing-Complete is to implement a Brainfuck
interpreter, a very minimalist language that is also
Turing-Complete.

It is a perfect Litmus case for the
Turing-Completude

One of the easiest ways to prove that a language is
Turing-Complete is to implement a Brainfuck
interpreter, a very minimalist language that is also
Turing-Complete.

It is a perfect Litmus case for the
Turing-Completude

Can we find a Litmus case for GADTs?

One of the easiest ways to prove that a language is
Turing-Complete is to implement a Brainfuck
interpreter, a very minimalist language that is also
Turing-Complete.

It is a perfect Litmus case for the
Turing-Completude

Can we find a Litmus case for GADTs?

As the local equality constraint was not
used, we define it via a GADT
(or an indexed type if it is not supported)

enum Eq[A, B]:

 case Refl[A]() extends Eq[A, A]

enum Eq[A, B]:

 case Refl[A]() extends Eq[A, A]

We define equality between A and B

enum Eq[A, B]:

 case Refl[A]() extends Eq[A, A]

We define equality between A and B

With only 1 constructor Refl

enum Eq[A, B]:

 case Refl[A]() extends Eq[A, A]

We define equality between A and B

With only 1 constructor Refl

Can only be embodied with
two locally equal types

enum Eq[A, B]:

 case Refl[A]() extends Eq[A, A]

We define equality between A and B

With only 1 constructor Refl

Can only be embodied with
two locally equal types

type Z = Int

val a : Eq[Int, String] = Eq.Refl() // does not compile

val b : Eq[Int, Int] = Eq.Refl()

val c : Eq[Int, Z] = Eq.Refl()

enum Eq[A, B]:

 case Refl[A]() extends Eq[A, A]

We define equality between A and B

With only 1 constructor Refl

Can only be embodied with
two locally equal types

type Z = Int

val a : Eq[Int, String] = Eq.Refl() // does not compile

val b : Eq[Int, Int] = Eq.Refl()

val c : Eq[Int, Z] = Eq.Refl()
Which can be translated as "if I can

instantiate a Refl() : Eq[A, B], then I
have a witness that A and B are locally

equal types.

enum Eq[A, B]:

 case Refl[A]() extends Eq[A, A]

We define equality between A and B

With only 1 constructor Refl

Can only be embodied with
two locally equal types

type Z = Int

val a : Eq[Int, String] = Eq.Refl() // does not compile

val b : Eq[Int, Int] = Eq.Refl()

val c : Eq[Int, Z] = Eq.Refl()
Which can be translated as "if I can

instantiate a Refl() : Eq[A, B], then I
have a witness that A and B are locally

equal types.

And to ensure
equalities, we can apply
the Leibniz Substitution
Principle to gives some
tools

enum Eq[A, B]:

 case Refl[A]() extends Eq[A, A]

enum Eq[A, B]:

 case Refl[A]() extends Eq[A, A]

Symmetry

def symmetry[A, B](

 witness: Eq[A, B]

) : Eq[B, A] = witness match

 case Eq.Refl() => Eq.Refl()

enum Eq[A, B]:

 case Refl[A]() extends Eq[A, A]

Symmetry

def symmetry[A, B](

 witness: Eq[A, B]

) : Eq[B, A] = witness match

 case Eq.Refl() => Eq.Refl()

Transitivity

def transitivity[A, B, C](

 witnessA: Eq[A, B],

 witnessB: Eq[B, C]

) : Eq[A, C] = (witnessA, witnessB) match

 case (Eq.Refl(), Eq.Refl()) => Eq.Refl()

enum Eq[A, B]:

 case Refl[A]() extends Eq[A, A]

Symmetry

def symmetry[A, B](

 witness: Eq[A, B]

) : Eq[B, A] = witness match

 case Eq.Refl() => Eq.Refl()

Transitivity

def transitivity[A, B, C](

 witnessA: Eq[A, B],

 witnessB: Eq[B, C]

) : Eq[A, C] = (witnessA, witnessB) match

 case (Eq.Refl(), Eq.Refl()) => Eq.Refl()

Free Cast

def cast[A, B](

 witness: Eq[A, B],

 value: A

) : B = witness match

 case Eq.Refl() => value

enum Eq[A, B]:

 case Refl[A]() extends Eq[A, A]

Symmetry

def symmetry[A, B](

 witness: Eq[A, B]

) : Eq[B, A] = witness match

 case Eq.Refl() => Eq.Refl()

Transitivity

def transitivity[A, B, C](

 witnessA: Eq[A, B],

 witnessB: Eq[B, C]

) : Eq[A, C] = (witnessA, witnessB) match

 case (Eq.Refl(), Eq.Refl()) => Eq.Refl()

Free Cast

def cast[A, B](

 witness: Eq[A, B],

 value: A

) : B = witness match

 case Eq.Refl() => value
Which gives a free-cast that can cross
abstraction and boxing (if the cookie has been
instantiated in the right place)

enum Eq[A, B]:

 case Refl[A]() extends Eq[A, A]

Symmetry

def symmetry[A, B](

 witness: Eq[A, B]

) : Eq[B, A] = witness match

 case Eq.Refl() => Eq.Refl()

Transitivity

def transitivity[A, B, C](

 witnessA: Eq[A, B],

 witnessB: Eq[B, C]

) : Eq[A, C] = (witnessA, witnessB) match

 case (Eq.Refl(), Eq.Refl()) => Eq.Refl()

Free Cast

def cast[A, B](

 witness: Eq[A, B],

 value: A

) : B = witness match

 case Eq.Refl() => value

Injectivity

def injectivity[T[_], A, B](

 witness: Eq[A, B]

) : Eq[T[A], T[B]] = witness match

 case Eq.Refl() => Eq.Refl()

enum Eq[A, B]:

 case Refl[A]() extends Eq[A, A]

Symmetry

def symmetry[A, B](

 witness: Eq[A, B]

) : Eq[B, A] = witness match

 case Eq.Refl() => Eq.Refl()

Transitivity

def transitivity[A, B, C](

 witnessA: Eq[A, B],

 witnessB: Eq[B, C]

) : Eq[A, C] = (witnessA, witnessB) match

 case (Eq.Refl(), Eq.Refl()) => Eq.Refl()

Free Cast

def cast[A, B](

 witness: Eq[A, B],

 value: A

) : B = witness match

 case Eq.Refl() => value

Injectivity

def injectivity[T[_], A, B](

 witness: Eq[A, B]

) : Eq[T[A], T[B]] = witness match

 case Eq.Refl() => Eq.Refl()

This our Litmus Case!

enum Eq[A, B]:

 case Refl[A]() extends Eq[A, A]

Symmetry

def symmetry[A, B](

 witness: Eq[A, B]

) : Eq[B, A] = witness match

 case Eq.Refl() => Eq.Refl()

Transitivity

def transitivity[A, B, C](

 witnessA: Eq[A, B],

 witnessB: Eq[B, C]

) : Eq[A, C] = (witnessA, witnessB) match

 case (Eq.Refl(), Eq.Refl()) => Eq.Refl()

Free Cast

def cast[A, B](

 witness: Eq[A, B],

 value: A

) : B = witness match

 case Eq.Refl() => value

Injectivity

def injectivity[T[_], A, B](

 witness: Eq[A, B]

) : Eq[T[A], T[B]] = witness match

 case Eq.Refl() => Eq.Refl()

This our Litmus Case!
Works since Scala 3!

enum Eq[A, B]:

 case Refl[A]() extends Eq[A, A]

Symmetry

def symmetry[A, B](

 witness: Eq[A, B]

) : Eq[B, A] = witness match

 case Eq.Refl() => Eq.Refl()

Transitivity

def transitivity[A, B, C](

 witnessA: Eq[A, B],

 witnessB: Eq[B, C]

) : Eq[A, C] = (witnessA, witnessB) match

 case (Eq.Refl(), Eq.Refl()) => Eq.Refl()

Free Cast

def cast[A, B](

 witness: Eq[A, B],

 value: A

) : B = witness match

 case Eq.Refl() => value

Injectivity

def injectivity[T[_], A, B](

 witness: Eq[A, B]

) : Eq[T[A], T[B]] = witness match

 case Eq.Refl() => Eq.Refl()

This our Litmus Case!

Handling type equalities with
injectivity support is very tricky.

So supporting them is a litmus
case for GADTs

Works since Scala 3!

enum Eq[A, B]:

 case Refl[A]() extends Eq[A, A]

Symmetry

def symmetry[A, B](

 witness: Eq[A, B]

) : Eq[B, A] = witness match

 case Eq.Refl() => Eq.Refl()

Transitivity

def transitivity[A, B, C](

 witnessA: Eq[A, B],

 witnessB: Eq[B, C]

) : Eq[A, C] = (witnessA, witnessB) match

 case (Eq.Refl(), Eq.Refl()) => Eq.Refl()

Free Cast

def cast[A, B](

 witness: Eq[A, B],

 value: A

) : B = witness match

 case Eq.Refl() => value

Injectivity

def injectivity[T[_], A, B](

 witness: Eq[A, B]

) : Eq[T[A], T[B]] = witness match

 case Eq.Refl() => Eq.Refl()

This our Litmus Case!

Handling type equalities with
injectivity support is very tricky.

So supporting them is a litmus
case for GADTs

Jeremy Yallop, Oleg Kiselyov. 2010.
First-class modules: hidden power and tantalizing promises.

Works since Scala 3!

enum Eq[A, B]:

 case Refl[A]() extends Eq[A, A]

Symmetry

def symmetry[A, B](

 witness: Eq[A, B]

) : Eq[B, A] = witness match

 case Eq.Refl() => Eq.Refl()

Transitivity

def transitivity[A, B, C](

 witnessA: Eq[A, B],

 witnessB: Eq[B, C]

) : Eq[A, C] = (witnessA, witnessB) match

 case (Eq.Refl(), Eq.Refl()) => Eq.Refl()

Free Cast

def cast[A, B](

 witness: Eq[A, B],

 value: A

) : B = witness match

 case Eq.Refl() => value

Injectivity

def injectivity[T[_], A, B](

 witness: Eq[A, B]

) : Eq[T[A], T[B]] = witness match

 case Eq.Refl() => Eq.Refl()

This our Litmus Case!

Handling type equalities with
injectivity support is very tricky.

So supporting them is a litmus
case for GADTs

Jeremy Yallop, Oleg Kiselyov. 2010.
First-class modules: hidden power and tantalizing promises.

Works since Scala 3!

Does this mean that GADTs are
absolutely perfect in Scala? Nah

enum Eq[A, B]:

 case Refl[A]() extends Eq[A, A]

Symmetry

def symmetry[A, B](

 witness: Eq[A, B]

) : Eq[B, A] = witness match

 case Eq.Refl() => Eq.Refl()

Transitivity

def transitivity[A, B, C](

 witnessA: Eq[A, B],

 witnessB: Eq[B, C]

) : Eq[A, C] = (witnessA, witnessB) match

 case (Eq.Refl(), Eq.Refl()) => Eq.Refl()

Free Cast

def cast[A, B](

 witness: Eq[A, B],

 value: A

) : B = witness match

 case Eq.Refl() => value

Injectivity

def injectivity[T[_], A, B](

 witness: Eq[A, B]

) : Eq[T[A], T[B]] = witness match

 case Eq.Refl() => Eq.Refl()

This our Litmus Case!

Handling type equalities with
injectivity support is very tricky.

So supporting them is a litmus
case for GADTs

Jeremy Yallop, Oleg Kiselyov. 2010.
First-class modules: hidden power and tantalizing promises.

Works since Scala 3!

Does this mean that GADTs are
absolutely perfect in Scala? Nah

Does Eq[A, B] only serve to prove the
partially correct support of GADTs?

Fixing OOP with guarded methods

methods that act only if the generics handle
some types

Fixing OOP with guarded methods

and without extension methods that
needs to break encapsulation

methods that act only if the generics handle
some types

Fixing OOP with guarded methods

and without extension methods that
needs to break encapsulation

methods that act only if the generics handle
some types

class MList[A](val v: List[A]):

 def sum(witness: Eq[A, Int]) : Int =

 witness match

 case Eq.Refl() =>

 this.v.reduce((x, y) => x + y)

 def flatten[B](witness: Eq[A, List[B]]) : List[B] =

 witness match

 case Eq.Refl() =>

 this.v.flatMap(X => X)

Fixing OOP with guarded methods

and without extension methods that
needs to break encapsulation

methods that act only if the generics handle
some types

class MList[A](val v: List[A]):

 def sum(witness: Eq[A, Int]) : Int =

 witness match

 case Eq.Refl() =>

 this.v.reduce((x, y) => x + y)

 def flatten[B](witness: Eq[A, List[B]]) : List[B] =

 witness match

 case Eq.Refl() =>

 this.v.flatMap(X => X)

guarding sum using Eq[A, Int]

Fixing OOP with guarded methods

and without extension methods that
needs to break encapsulation

methods that act only if the generics handle
some types

class MList[A](val v: List[A]):

 def sum(witness: Eq[A, Int]) : Int =

 witness match

 case Eq.Refl() =>

 this.v.reduce((x, y) => x + y)

 def flatten[B](witness: Eq[A, List[B]]) : List[B] =

 witness match

 case Eq.Refl() =>

 this.v.flatMap(X => X)

guarding sum using Eq[A, Int]

guarding flatten using Eq[A,List[B]]

In fact, Eq[A, B] is the quintessential GADT. And much
like Sum, Prod and Arr, it's normally sufficient to encode
all other GADTs.

In fact, Eq[A, B] is the quintessential GADT. And much
like Sum, Prod and Arr, it's normally sufficient to encode
all other GADTs.

Patricia Johann and Neil Ghani. 2008.
Foundations For Structured Programming With GADTs.

In fact, Eq[A, B] is the quintessential GADT. And much
like Sum, Prod and Arr, it's normally sufficient to encode
all other GADTs.

Patricia Johann and Neil Ghani. 2008.
Foundations For Structured Programming With GADTs.

logic, a GADT is a sum-type where the constructor
is attached to a local type equality constraint

(what is exactly Eq)

In fact, Eq[A, B] is the quintessential GADT. And much
like Sum, Prod and Arr, it's normally sufficient to encode
all other GADTs.

Patricia Johann and Neil Ghani. 2008.
Foundations For Structured Programming With GADTs.

logic, a GADT is a sum-type where the constructor
is attached to a local type equality constraint

(what is exactly Eq)

enum T[A]:

 case SString() extends T[String]

 case SSInt() extends T[Int]

GADT

In fact, Eq[A, B] is the quintessential GADT. And much
like Sum, Prod and Arr, it's normally sufficient to encode
all other GADTs.

Patricia Johann and Neil Ghani. 2008.
Foundations For Structured Programming With GADTs.

logic, a GADT is a sum-type where the constructor
is attached to a local type equality constraint

(what is exactly Eq)

enum T[A]:

 case SString() extends T[String]

 case SSInt() extends T[Int]

enum T[A]:

 case SString(w: Eq[A, String])

 case SInt(w: Eq[A, Int])

GADT

EQ[A, B]

In fact, Eq[A, B] is the quintessential GADT. And much
like Sum, Prod and Arr, it's normally sufficient to encode
all other GADTs.

Patricia Johann and Neil Ghani. 2008.
Foundations For Structured Programming With GADTs.

logic, a GADT is a sum-type where the constructor
is attached to a local type equality constraint

(what is exactly Eq)

enum T[A]:

 case SString() extends T[String]

 case SSInt() extends T[Int]

enum T[A]:

 case SString(w: Eq[A, String])

 case SInt(w: Eq[A, Int])

def zero[A](tagged: T[A]) : A =

 import T.*

 tagged match

 case SString(Eq.Refl()) => ""

 case SInt(Eq.Refl()) => 0

GADT

EQ[A, B]

Can be used as a GADT

In fact, Eq[A, B] is the quintessential GADT. And much
like Sum, Prod and Arr, it's normally sufficient to encode
all other GADTs.

Patricia Johann and Neil Ghani. 2008.
Foundations For Structured Programming With GADTs.

logic, a GADT is a sum-type where the constructor
is attached to a local type equality constraint

(what is exactly Eq)

enum T[A]:

 case SString() extends T[String]

 case SSInt() extends T[Int]

enum T[A]:

 case SString(w: Eq[A, String])

 case SInt(w: Eq[A, Int])

def zero[A](tagged: T[A]) : A =

 import T.*

 tagged match

 case SString(Eq.Refl()) => ""

 case SInt(Eq.Refl()) => 0

GADT

EQ[A, B]

Can be used as a GADTMEH

def partial(

 tagged: T[Int]

) : Int = tagged match

 case T.SInt(Eq.Refl()) => 0

Warming on T.SString(_)

But it may be my lack
of Scala writing skills.

��

📢

In fact, Eq[A, B] is the quintessential GADT. And much
like Sum, Prod and Arr, it's normally sufficient to encode
all other GADTs.

Patricia Johann and Neil Ghani. 2008.
Foundations For Structured Programming With GADTs.

logic, a GADT is a sum-type where the constructor
is attached to a local type equality constraint

(what is exactly Eq)

enum T[A]:

 case SString() extends T[String]

 case SSInt() extends T[Int]

enum T[A]:

 case SString(w: Eq[A, String])

 case SInt(w: Eq[A, Int])

def zero[A](tagged: T[A]) : A =

 import T.*

 tagged match

 case SString(Eq.Refl()) => ""

 case SInt(Eq.Refl()) => 0

GADT

EQ[A, B]

Can be used as a GADTMEH

def partial(

 tagged: T[Int]

) : Int = tagged match

 case T.SInt(Eq.Refl()) => 0

Warming on T.SString(_)

But it may be my lack
of Scala writing skills.

��

📢
A very complicated issue.

In fact, Eq[A, B] is the quintessential GADT. And much
like Sum, Prod and Arr, it's normally sufficient to encode
all other GADTs.

Patricia Johann and Neil Ghani. 2008.
Foundations For Structured Programming With GADTs.

logic, a GADT is a sum-type where the constructor
is attached to a local type equality constraint

(what is exactly Eq)

enum T[A]:

 case SString() extends T[String]

 case SSInt() extends T[Int]

enum T[A]:

 case SString(w: Eq[A, String])

 case SInt(w: Eq[A, Int])

def zero[A](tagged: T[A]) : A =

 import T.*

 tagged match

 case SString(Eq.Refl()) => ""

 case SInt(Eq.Refl()) => 0

GADT

EQ[A, B]

Can be used as a GADTMEH

def partial(

 tagged: T[Int]

) : Int = tagged match

 case T.SInt(Eq.Refl()) => 0

Warming on T.SString(_)

But it may be my lack
of Scala writing skills.

��

📢
A very complicated issue.

Jacques Garrigue and Jacques Le Normand. 2015.
GADTs and exhaustiveness: looking for the impossible.

"A Generalized Algebraic Data Type is a sum type that
allows its constructors to be non-surjective on one or
more of its type parameters and introduces local
type-equality constraints in pattern-matching
branches, making the expression of existential types
trivial"

��

"A Generalized Algebraic Data Type is a sum type that
allows its constructors to be non-surjective on one or
more of its type parameters and introduces local
type-equality constraints in pattern-matching
branches, making the expression of existential types
trivial"

��

Introducing Local Types Equation is stronger than
introducing Local Types (existentials) this is why

GADTs come, de facto with existentials

"A Generalized Algebraic Data Type is a sum type that
allows its constructors to be non-surjective on one or
more of its type parameters and introduces local
type-equality constraints in pattern-matching
branches, making the expression of existential types
trivial"

��

Introducing Local Types Equation is stronger than
introducing Local Types (existentials) this is why

GADTs come, de facto with existentials

Haskell 's
ExistentialQuantification

predate GADT introduction

enum TList[TY, W]:

 case Nil[W]() extends TList[W, W]

 case Cons[A, TY, W](x: A, xs: TList[TY, W]) extends TList[A => TY, W]

enum TList[TY, W]:

 case Nil[W]() extends TList[W, W]

 case Cons[A, TY, W](x: A, xs: TList[TY, W]) extends TList[A => TY, W]

Witness to deal with usage

enum TList[TY, W]:

 case Nil[W]() extends TList[W, W]

 case Cons[A, TY, W](x: A, xs: TList[TY, W]) extends TList[A => TY, W]

Type-level Continuation

Witness to deal with usage

enum TList[TY, W]:

 case Nil[W]() extends TList[W, W]

 case Cons[A, TY, W](x: A, xs: TList[TY, W]) extends TList[A => TY, W]

Type-level Continuation

Witness to deal with usage

Ensure:
TY = X => W

enum TList[TY, W]:

 case Nil[W]() extends TList[W, W]

 case Cons[A, TY, W](x: A, xs: TList[TY, W]) extends TList[A => TY, W]

Type-level Continuation

Witness to deal with usage

Ensure:
TY = X => W

Existential, packed by the
continuation

enum TList[TY, W]:

 case Nil[W]() extends TList[W, W]

 case Cons[A, TY, W](x: A, xs: TList[TY, W]) extends TList[A => TY, W]

Type-level Continuation

Witness to deal with usage

Ensure:
TY = X => W

Existential, packed by the
continuation

Track the continuation

enum TList[TY, W]:

 case Nil[W]() extends TList[W, W]

 case Cons[A, TY, W](x: A, xs: TList[TY, W]) extends TList[A => TY, W]

Type-level Continuation

Witness to deal with usage

Ensure:
TY = X => W

Existential, packed by the
continuation

Track the continuation

val r : TList[Int => String => String, String] =

 import TList.*

 Cons(1, Cons("foo", Nil()))

enum TList[TY, W]:

 case Nil[W]() extends TList[W, W]

 case Cons[A, TY, W](x: A, xs: TList[TY, W]) extends TList[A => TY, W]

Type-level Continuation

Witness to deal with usage

Ensure:
TY = X => W

Existential, packed by the
continuation

Track the continuation

val r : TList[Int => String => String, String] =

 import TList.*

 Cons(1, Cons("foo", Nil()))

W can be fixed by the usage

enum TList[TY, W]:

 case Nil[W]() extends TList[W, W]

 case Cons[A, TY, W](x: A, xs: TList[TY, W]) extends TList[A => TY, W]

Type-level Continuation

Witness to deal with usage

Ensure:
TY = X => W

Existential, packed by the
continuation

Track the continuation

val r : TList[Int => String => String, String] =

 import TList.*

 Cons(1, Cons("foo", Nil()))

W can be fixed by the usage

Going further

val url = genLink("user" ~: string ~: "id" ~: int ~: eop)("u55")(10)

 // Generate : /user/u55/id/10/

val page : Option[(String, Int)]= handleLink(

 "user/u55/id/10/",

 "user" ~: string ~: "id" ~: int ~: eop

) (userName => userId => (userName, userId))

 // Generate: Some(("u55", 10))

Bidirectional routing

val url = genLink("user" ~: string ~: "id" ~: int ~: eop)("u55")(10)

 // Generate : /user/u55/id/10/

val page : Option[Html]= handleLink(

 "user/u55/id/10/",

 "user" ~: string ~: "id" ~: int ~: eop

) (userName => userId => renderUserPage(userName, userId))

 // Generate: Some(("u55", 10))

Bidirectional routing

Generate URL from a path

Generate controller from a path

val url = genLink("user" ~: string ~: "id" ~: int ~: eop)("u55")(10)

 // Generate : /user/u55/id/10/

val page : Option[Html]= handleLink(

 "user/u55/id/10/",

 "user" ~: string ~: "id" ~: int ~: eop

) (userName => userId => renderUserPage(userName, userId))

 // Generate: Some(("u55", 10))

Bidirectional routing

Generate URL from a path

Generate controller from a path

val url = genLink("user" ~: string ~: "id" ~: int ~: eop)("u55")(10)

 // Generate : /user/u55/id/10/

val page : Option[Html]= handleLink(

 "user/u55/id/10/",

 "user" ~: string ~: "id" ~: int ~: eop

) (userName => userId => renderUserPage(userName, userId))

 // Generate: Some(("u55", 10))

Bidirectional routing

Generate URL from a path

Generate controller from a path

Using a technique similar to Typelevel List

Bidirectional routing

enum V[T]:

 case String extends V[String]

 case Int extends V[Int]

 case Bool extends V[Boolean]

enum Path[TY, W]:

 case Eop[W]()

 extends Path[W, W]

 case Const(x: String, xs: Path[TY, W])

 case Var[A, TY, W](x: V[A], xs: Path[TY, W])

 extends Path[A => TY, W]

 def ~:[A](x: V[A]) : Path[A => TY, W] = Path.Var(x, this)

 def ~:(x: String) : Path[TY, W] = Path.Const(x, this)

def eop[W] : Path[W, W] = Path.Eop[W]()

val string = V.String

val int = V.Int

val bool = V.Bool

Bidirectional routing

enum V[T]:

 case String extends V[String]

 case Int extends V[Int]

 case Bool extends V[Boolean]

enum Path[TY, W]:

 case Eop[W]()

 extends Path[W, W]

 case Const(x: String, xs: Path[TY, W])

 case Var[A, TY, W](x: V[A], xs: Path[TY, W])

 extends Path[A => TY, W]

 def ~:[A](x: V[A]) : Path[A => TY, W] = Path.Var(x, this)

 def ~:(x: String) : Path[TY, W] = Path.Const(x, this)

def eop[W] : Path[W, W] = Path.Eop[W]()

val string = V.String

val int = V.Int

val bool = V.Bool

Ensure:
TY = X => W

Bidirectional routing

enum V[T]:

 case String extends V[String]

 case Int extends V[Int]

 case Bool extends V[Boolean]

enum Path[TY, W]:

 case Eop[W]()

 extends Path[W, W]

 case Const(x: String, xs: Path[TY, W])

 case Var[A, TY, W](x: V[A], xs: Path[TY, W])

 extends Path[A => TY, W]

 def ~:[A](x: V[A]) : Path[A => TY, W] = Path.Var(x, this)

 def ~:(x: String) : Path[TY, W] = Path.Const(x, this)

def eop[W] : Path[W, W] = Path.Eop[W]()

val string = V.String

val int = V.Int

val bool = V.Bool

Representing type, typelevel

Ensure:
TY = X => W

Bidirectional routing

enum V[T]:

 case String extends V[String]

 case Int extends V[Int]

 case Bool extends V[Boolean]

enum Path[TY, W]:

 case Eop[W]()

 extends Path[W, W]

 case Const(x: String, xs: Path[TY, W])

 case Var[A, TY, W](x: V[A], xs: Path[TY, W])

 extends Path[A => TY, W]

 def ~:[A](x: V[A]) : Path[A => TY, W] = Path.Var(x, this)

 def ~:(x: String) : Path[TY, W] = Path.Const(x, this)

def eop[W] : Path[W, W] = Path.Eop[W]()

val string = V.String

val int = V.Int

val bool = V.Bool

Representing type, typelevel

Same as our List but constraint
by V[T].

Ensure:
TY = X => W

Bidirectional routing

enum V[T]:

 case String extends V[String]

 case Int extends V[Int]

 case Bool extends V[Boolean]

enum Path[TY, W]:

 case Eop[W]()

 extends Path[W, W]

 case Const(x: String, xs: Path[TY, W])

 case Var[A, TY, W](x: V[A], xs: Path[TY, W])

 extends Path[A => TY, W]

 def ~:[A](x: V[A]) : Path[A => TY, W] = Path.Var(x, this)

 def ~:(x: String) : Path[TY, W] = Path.Const(x, this)

def eop[W] : Path[W, W] = Path.Eop[W]()

val string = V.String

val int = V.Int

val bool = V.Bool

Representing type, typelevel

A constant does not create Hole

Same as our List but constraint
by V[T].

Ensure:
TY = X => W

def genLink[TY]

 (path: Path[TY, String]) : TY = …

Bidirectional routing

enum V[T]:

 case String extends V[String]

 case Int extends V[Int]

 case Bool extends V[Boolean]

enum Path[TY, W]:

 case Eop[W]()

 extends Path[W, W]

 case Const(x: String, xs: Path[TY, W])

 case Var[A, TY, W](x: V[A], xs: Path[TY, W])

 extends Path[A => TY, W]

 def ~:[A](x: V[A]) : Path[A => TY, W] = Path.Var(x, this)

 def ~:(x: String) : Path[TY, W] = Path.Const(x, this)

def eop[W] : Path[W, W] = Path.Eop[W]()

val string = V.String

val int = V.Int

val bool = V.Bool

Representing type, typelevel

A constant does not create Hole

Same as our List but constraint
by V[T].

Ensure:
TY = X => W

def genLink[TY]

 (path: Path[TY, String]) : TY = …

def handleLink[TY, W]

 (uri: String, path: Path[TY, W])

 (controller: TY) : Option[W] = …

"A Generalized Algebraic Data Type is a sum type that
allows its constructors to be non-surjective on one or
more of its type parameters and introduces local
type-equality constraints in pattern-matching
branches, making the expression of existential types
trivial"

��To conclude

"A Generalized Algebraic Data Type is a sum type that
allows its constructors to be non-surjective on one or
more of its type parameters and introduces local
type-equality constraints in pattern-matching
branches, making the expression of existential types
trivial"

��To conclude

Thank You!

��

